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PREFACE TO THE THIRD EDITION

When we were asked to prepare the third edition of this book, it was our con-
sensus that it should not be altered in any significant way, and that Herstein’s
informal style should be preserved. We feel that one of the book’s virtues is
the fact that it covers a big chunk of abstract algebra in a condensed and in-
teresting way. At the same time, without trivializing the subject, it remains ac-
cessible to most undergraduates.

We have, however, corrected minor errors, straightened out inconsis-
tencies, clarified and expanded some proofs, and added a few examples.

To resolve the many typographical problems of the second edition,
Prentice Hall has had the book completely retypeset—making it easier and
more pleasurable to read.

It has been pointed out to us that some instructors would find it useful
to have the Symmetric Group S, and the cycle notation available in Chapter
2, in order to provide more examples of groups. Rather than alter the
arrangement of the contents, thereby disturbing the original balance, we sug-
gest an alternate route through the material, which addresses this concern.
After Section 2.5, one could spend an hour discussing permutations and their
cycle decomposition (Sections 3.1 and 3.2), leaving the proofs until later. The
students might then go over several past examples of finite groups and explic-
itly set up isomorphisms with subgroups of §,. This exercise would be moti-
vated by Cayley’s theorem, quoted in Section 2.5. At the same time, it would
have the beneficial result of making the students more comfortable with the
concept of an isomorphism. The instructor could then weave in the various
subgroups of the Symmetric Groups S, as examples throughout the remain-

ix



X Preface to Third Edition Ch. 6

der of Chapter 2. If desired, one could even introduce Sections 3.1 and 3.2
after Section 2.3 or 2.4.
Two changes in the format have been made since the first edition. First,
a Symbol List has been included to facilitate keeping track of terminology.
Second, a few problems have been marked with an asterisk (*). These serve
as a vehicle to introduce concepts and simple arguments that relate in some
important way to the discussion. As such, they should be read carefully.
Finally, we take this opportunity to thank the many individuals whose
collective efforts have helped to improve this edition. We thank the review-
ers: Kwangil Koh from North Carolina State University, Donald Passman
from the University of Wisconsin, and Robert Zinc from Purdue University.
And, of course, we thank George Lobell and Elaine Wetterau, and others at
Prentice Hall who have been most helpful.
Barbara Cortzen
David J. Winter



PREFACE TO THE FIRST EDITION

In the last half-century or so abstract algebra has become increasingly impor-
tant not only in mathematics itself, but also in a variety of other disciplines.
For instance, the importance of the results and concepts of abstract algebra
play an ever more important role in physics, chemistry, and computer science,
to cite a few such outside fields.

In mathematics itself abstract algebra plays a dual role: that of a unify-
ing link between disparate parts of mathematics and that of a research subject
with a highly active life of its own. It has been a fertile and rewarding research
area both in the last 100 years and at the present moment. Some of the great
accomplishments of our twentieth-century mathematics have been precisely
in this area. Exciting results have been proved in group theory, commutative
and noncommutative ring theory, Lie algebras, Jordan algebras, combina-
torics, and a host of other parts of what is known as abstract algebra. A sub-
ject that was once regarded as esoteric has become considered as fairly down-
to-earth for a large cross section of scholars.

The purpose of this book is twofold. For those readers who either want
to go on to do research in mathematics or in some allied fields that use alge-
braic notions and methods, this book should serve as an introduction—and,
we stress, only as an introduction—to this fascinating subject. For interested
readers who want to learn what is going on in an engaging part of modern
mathematics, this book could serve that purpose, as well as provide them with
some highly usable tools to apply in the areas in which they are interested.

The choice of subject matter has been made with the objective of intro-
ducing readers to some of the fundamental algebraic systems that are both in-
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xii Preface to First Edition

teresting and of wide use. Moreover, in each of these systems the aim has
been to arrive at some significant results. There is little purpose served in
studying some abstract object without seeing some nontrivial consequences of
the study. We hope that we have achieved the goal of presenting interesting,
applicable, and significant results in each of the systems we have chosen to
discuss.

As the reader will soon see, there are many exercises in the book. They
are often divided into three categories: easier, middle-level, and harder (with
an occasional very hard). The purpose of these problems is to allow students
to test their assimilation of the material, to challenge their mathematical inge-
nuity, to prepare the ground for material that is yet to come, and to be a
means of developing mathematical insight, intuition, and techniques. Readers
should not become discouraged if they do not manage to solve all the prob-
lems. The intent of many of the problems is that they be tried—even if not
solved—for the pleasure (and frustration) of the reader. Some of the prob-
lems appear several times in the book. Trying to do the problems is undoubt-
edly the best way of going about learning the subject.

We have strived to present the material in the language and tone of a
classroom lecture. Thus the presentation is somewhat chatty; we hope that
this will put the readers at their ease. An attempt is made to give many and
revealing examples of the various concepts discussed. Some of these exam-
ples are carried forward to be examples of other phenomena thag come up.
They are often referred to as the discussion progresses.

We feel that the book is self-contained, except in one section—the sec-
ond last one of the book—where we make implicit use of the fact that a poly-
nomial over the complex field has complex roots (that is the celebrated Fun-
damental Theorem of Algebra due to Gauss), and in the last section where we
make use of a little of the calculus.

We are grateful to many people for their comments and suggestions on
earlier drafts of the book. Many of the changes they suggested have been in-
corporated and should improve the readability of the book. We should like to
express our special thanks to Professor Martin Isaacs for his highly useful
comments.

We are also grateful to Fred Flowers for his usual superb job of typing
the manuscript, and to Mr. Gary W. Ostedt of the Macmillan Company for
his enthusiasm for the project and for bringing it to publication.

With this we wish all the readers a happy voyage on the mathematical
journey they are about to undertake into this delightful and beautiful realm
of abstract algebra.

LN.H.
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THINGS FAMILIAR
AND LESS FAMILIAR

1. A FEW PRELIMINARY REMARKS

For many readers this book will be their first contact with abstract mathe-
matics. The subject to be discussed is usually called “abstract algebra,” but
the difficulties that the reader may encounter are not so much due to the “al-
gebra” part as they are to the “abstract” part.

On seeing some area of abstract mathematics for the first time, be it in
analysis, topology, or what-not, there seems to be a common reaction for the
novice. This can best be described by a feeling of being adrift, of not having
something solid to hang on to. This is not too surprising, for while many of the
ideas are fundamentally quite simple, they are subtle and seem to elude one’s
grasp the first time around. One way to mitigate this feeling of limbo, or asking
oneself “What is the point of all this?,” is to take the concept at hand and see
what it says in particular cases. In other words, the best road to good under-
standing of the notions introduced is to look at examples. This is true in all of
mathematics, but it is particularly true for the subject matter of abstract algebra.

Can one, with a few strokes, quickly describe the essence, purpose, and
background for the material we shall study? Let’s give it a try.

We start with some collection of objects § and endow this collection
with an algebraic structure by assuming that we can combine, in one or sev-
eral ways (usually two), elements of this set S to obtain, once more, elements
of this set S. These ways of combining elements of S we call operations on S.
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Then we try to condition or regulate the nature of S by imposing certain
rules on how these operations behave on S. These rules are usually called the
axioms defining the particular structure on S. These axioms are for us to de-
fine, but the choice made comes, historically in mathematics, from noticing
that there are many concrete mathematical systems that satisfy these rules or
axioms. We shall study some of the basic axiomatic algebraic systems in this
book, namely groups, rings, and fields.

Of course, one could try many sets of axioms to define new structures.
What would we require of such a structure? Certainly we would want that
the axioms be consistent, that is, that we should not be led to some nonsensi-
cal contradiction computing within the framework of the allowable things the
axioms permit us to do. But that is not enough. We can easily set up such al-
gebraic structures by imposing a set of rules on a set S that lead to a patho-
logical or weird system. Furthermore, there may be very few examples of
something obeying the rules we have laid down.

Time has shown that certain structures defined by “axioms” play an im-
portant role in mathematics (and other areas as well) and that certain others
are of no interest. The ones we mentioned earlier, namely groups, rings, and
fields, have stood the test of time.

A word about the use of “axioms.” In everyday language “axiom”
means a self-evident truth. But we are not using everyday langua.'ge; we are
dealing with mathematics. An axiom is not a universal truth—but one of sev-
eral rules spelling out a given mathematical structure. The axiom is true in
the system we are studying because we have forced it to be true by hypothe-
sis. It is a license, in the particular structure, to do certain things.

We return to something we said earlier about the reaction that many
students have on their first encounter with this kind of algebra, namely a lack
of feeling that the material is something they can get their teeth into. Do not
be discouraged if the initial exposure leaves you in a bit of a fog. Stick with
it, try to understand what a given concept says, and most importantly, look at
particular, concrete examples of the concept under discussion.

PROBLEMS

1. Let S be a set having an operation * which assigns an element a * b of §
for any a, b € S. Let us assume that the following two rules hold:
1. If a, b are any objects in S, thena * b = a.
2. If a, b are any objects in S, thena * b = b * a.

Show that S can have at most one object.
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2. Let S be the set of all integers 0, £1, =2,..., =n,....Fora, b in S define

* by a * b = a — b. Verify the following:

(@) a*b # b *xaunlessa = b.

(b) (a*b)*c+# ax(b*c)in general. Under what conditions on a, b, c is
(@axb)*c=ax*(bx*c)?

(c¢) The integer 0 has the property that a * 0 = a for every a in S.

(d) Forain S,a*a=0.

3. Let S consist of the two objects [ ] and A. We define the operation * on S
by subjecting [ ] and A to the following conditions:
LOxA=A=A=*[]

2. O+ =0

3. Ax A =1

Verify by explicit calculation that if a, b, c are any elements of S (i.e., a, b
and c can be any of [] or A), then:

(@) a*bisin S.

(b) (a*b)*c=ax(b*c).

(¢) a*b=0>b+a.

(d) There is a particular a in S such thata* b = b *a = b forall b in S.
(e) Given b in S, then b * b = a, where a is the particular element in Part

(d).

2. SET THEORY

With the changes in the mathematics curriculum in the schools in the United
States, many college students have had some exposure to set theory. This in-
troduction to set theory in the schools usually includes the elementary no-
tions and operations with sets. Going on the assumption that many readers
will have some acquaintance with set theory, we shall give a rapid survey of
those parts of set theory that we shall need in what follows.

First, however, we need some notation. To avoid the endless repetition
of certain phrases, we introduce a shorthand for these phrases. Let S be a
collection of objects; the objects of S we call the elements of S. To denote
that a given element, a, is an element of S, we write a € S—this is read “a is
an element of S.” To denote the contrary, namely that an object a is not an
element of S, we write a & S. So, for instance, if S denotes the set of all posi-
tive integers 1,2,3,...,n,...,then 165 € §, whereas —13 & S.

We often want to know or prove that given two sets S and 7, one of
these is a part of the other. We say that S is a subser of T, which we write
S C T (read “S is contained in 7 ”) if every element of S is an element of 7.
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In terms of the notation we now have: § C T if s € S implies that s € T. We
can also denote this by writing 7 O §, read “T contains S.” (This does not ex-
clude the possibility that § = 7, that is, that S and 7 have exactly the same
elements.) Thus, if 7 is the set of all positive integers and § is the set of all
positive even integers, then S C 7, and S is a subset of 7. In the definition
given above, S D S for any set §; that is, S is always a subset of itself.

We shall frequently need to show that two sets S and 7, defined per-
haps in distinct ways, are equal, that is, they consist of the same set of ele-
ments. The usual strategy for proving this is to show that both § C 7 and
T C S. For instance, if S is the set of all positive integers having 6 as a factor
and 7 is the set of all positive integers having both 2 and 3 as factors, then
S = T. (Prove!)

The need also arises for a very peculiar set, namely one having no ele-
ments. This set is called the null or empty set and is denoted by @. It has the
property that it is a subset of any set S.

Let A, B be subsets of a given set S. We now introduce methods of con-
structing other subsets of S from A and B. The first of these is the union of A
and B, written A U B, which is defined: A U B is that subset of S consisting
of those elements of S that are elements of A or are elements of B. The “or”
we have just used is somewhat different in meaning from the ordinary usage
of the word. Here we mean that an element cisin A U B ifitisin A, or is in
B, or is in both. The “or” is not meant to exclude the possibility that both
things are true. Consequently, for instance, A U A = A.

IfA={1,2,3}and B ={2,4,6,10},then A U B = {1, 2, 3, 4, 6, 10}.

We now proceed to our second way of constructing new sets from old.
Again let A and B be subsets of a set §; by the intersection of A and B, writ-
ten A N B, we shall mean the subset of S consisting of those elements that
are both in A and in B. Thus, in the example above, A N B = {2}. It should
be clear from the definitions involved that A " B C A and A N B C B.
Particular examples of intersections that hold universally are: A N A = A,
ANS=A,ANQP=07.

This is an opportune moment to introduce a notational device that will
be used time after time. Given a set S, we shall often be called on to de-
scribe the subset A of §, whose elements satisfy a certain property P. We
shall write this as A = {s € S| s satisfies P}. For instance, if A, B are subsets
of S;$then AUB ={s€S|sEAorsE B}whileANB={seS|se€A
and s € B}.

Although the notions of union and intersection of subsets of S have
been defined for two subsets, it is clear how one can define the union and in-
tersection of any number of subsets.

We now introduce a third operation we can perform on sets, the differ-
ence of two sets. If A, B are subsets of S, we define A — B={a € A |a & B}.
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So if A is the set of all positive integers and B is the set of all even integers,
then A — B is the set of all positive odd integers. In the particular case when
A is a subset of S, the difference S — A is called the complement of A in §
and is written A’'.

We represent these three operations pictorially. If A is @ and B is®),
then

_¢ ///ﬁ -
1. AUB ///’/4 /// 1s the shaded area.
2. ANB= 1s the shaded area.
3. A—-B= %‘» 1s the shaded area.
/L
77
4. B— A =(.,4 /%// 1s the shaded area.

Note the relation among the three operations, namely the equality
AUB=(ANB)U(A — B)U (B — A). As an illustration of how one goes
about proving the equality of sets constructed by such set-theoretic construc-
tions, we pfove this latter alleged equality. We first show that (A N B) U
(A — B)U (B — A) C A U B; this part is easy for, by definition, A N B C A,
A—-—BCA,and B — A C B, hence

(ANB)U(A - B)UB-A)CAUAUB=AUB.

N\

\)

Now for the other direction, namely that A U BC (A N B) U (A — B) U
(B—A).Givenu€e AUB,ifue Aandu € B,thenu € A N B, so it is cer-
tainly in (A N B) U (A — B) U (B — A). On the other hand, if u € A but
u & B, then, by the very definition of A — B, u € A — B, so again it is cer-
tainly in (A N B) U (A — B) U (B — A). Finally, if u € B but u & A, then
u€ B — A,soagainitisin (A N B) U (A — B) U (B — A). We have thus
covered all the possibilities and have shown that A U B C (A N B) U
(A — B) U (B — A). Having the two opposite containing relations of A U B
and (A N B) U (A — B) U (B — A), we obtain the desired equality of these
two sets.

We close this brief review of set theory with yet another construction
we can carry out on sets. This is the Cartesian product defined for the two
sets A, Bby A X B = {(a, b) |a € A, b € B}, where we declare the ordered
pair (a, b) to be equal to the ordered pair (a;, b,) if and only if a = a; and
b = b,. Here, too, we need not restrict ourselves to two sets; for instance, we
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can define, for sets A, B, C, their Cartesian product as the set of ordered
triples (a, b, ¢), where a € A, b € B, ¢ € C and where equality of two or-
dered triples is defined component-wise.

PROBLEMS

Easier Problems

1.

2.

® N2

9.
10.
11.

Describe the following sets verbally.

(a) S = {Mercury, Venus, Earth, ..., Pluto}.
(b) S = {Alabama, Alaska, ..., Wyoming}.
Describe the following sets verbally.

(@) $S=1{2,4,6,8,...}.

(b) §=1{2,4,8,16,32,...}.

(¢) S=1{1,4,9,16,25,36,...}.

. If A is the set of all residents of the United States, B the set of all Cana-

dian citizens, and C the set of all women in the world, describe the sets
ANBNCA—-B,A—C, C~- Averbally. .

If A={1,4 7 a and B = {3, 4, 9, 11} and you have been told that
A N B = {4, 9}, what must a be?

If AC Band B C C, prove that A C C.

If A C B, prove that A U C C B U C for any set C.

Show that AUB=BUAand AN B = BN A.

Prove that (A — B) U (B — A) = (A U B) — (A N B). What does this
look like pictorially?

Provethat AN (BUC)=(ANB)U(ANCO).
Provethat AU(BNC)=(AUB)N(AUQCQC).
Write down all the subsets of § = {1, 2, 3, 4}.

Middle-Level Problems

*12.

*13.

If Cis a subset of S, let C’ denote the complement of C in S. Prove the
De Morgan Rules for subsets A, B of S, namely:

@ (ANB) =A"UB'".

(b) AUB) =A"NB'.

Let S be a set. For any two subsets of S we define

A+B=(A-BUB-A) and A-B=ANB.
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*14.

15.

16.

17.

18.

19.

*20.
21.

Prove that:

(a) A+ B=B+ A.
(b) A+ QD =A.

(c) A-A=A.

d A+ A=07.

e A+(B+C)=(A+ B)+C.

f) fA+B=A+ C,then B = C.

@ A-(B+C)=A-B+A-C.

If C is a finite set, let m(C) denote the number of elements in C. If A, B
are finite sets, prove that

m(A U B) = m(A) + m(B) — m(A N B).

For three finite sets A, B, C find a formula for m(A U B U C). (Hint:
First consider D = B U C and use the result of Problem 14.)

Take a shot at finding m(A;, U A, U --- U A,) for n finite sets A, A,, ...
A,.

Use the result of Problem 14 to show that if 80% of all Americans have
gone to high school and 70% of all Americans read a daily newspaper,
then at least 50% of Americans have both gone to high school and read a
daily newspaper.

A public opinion poll shows that 93% of the population agreed with the
government on the first decision, 84% on the second, and 74% on the
third, for three decisions made by the government. At least what per-
centage of the population agreed with the government on all three deci-
sions? (Hint: Use the results of Problem 15.)

In his book A Tangled Tale, Lewis Carroll proposed the following riddle
about a group of disabled veterans: “Say that 70% have lost an eye, 75%
an ear, 80% an arm, 85% a leg. What percentage, at least, must have lost
all four?” Solve Lewis Carroll’s problem.

Show, for finite sets A, B, that m(A X B) = m(A)m(B).

If S is a set having five elements:

(a) How many subsets does S have?

(b) How many subsets having four elements does S have?
(¢) How many subsets having two elements does S have?

Harder Problems

22.

(a) Show that a set having n elements has 2" subsets.
(b) If 0 <m < n, how many subsets are there that have exactly m ele-
ments?
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3. MAPPINGS

One of the truly universal concepts that runs through almost every phase of
mathematics is that of a function or mapping from one set to another. One
could safely say that there is no part of mathematics where the notion does
not arise or play a central role. The definition of a function from one set to
another can be given in a formal way in terms of a subset of the Cartesian
product of these sets. Instead, here, we shall give an informal and admittedly
nonrigorous definition of a mapping (function) from one set to another.

Let S, T be sets; a function or mapping f from S to T is a rule that as-
signs to each element s € S a unique element t € T. Let’s explain a little
more thoroughly what this means. If s is a given element of S, then there is
only one element ¢ in T that is associated to s by the mapping. As s varies
over S, t varies over T (in a manner depending on s). Note that by the defini-
tion given, the following is not a mapping. Let S be the set of all people in
the world and T the set of all countries in the world. Let f be the rule that as-
signs to every person his or her country of citizenship. Then f is not a map-
ping from S to 7. Why not? Because there are people in the world that enjoy
a dual citizenship; for such people there would not be a unique country of cit-
izenship. Thus, if Mary Jones is both an English and French citizén, f would
not make sense, as a mapping, when applied to Mary Jones. On the other
hand, the rule f: R — R, where R is the set of real numbers, defined by
f(a) = a* for a € R, is a perfectly good function from R to R. It should be
noted that f(—2) = (—2)* = 4 = f(2), and f(—a) = f(a) for alla € R.

We denote that f is a mapping from S to 7 by f: S — T and for the
t € T mentioned above we write t = f(s); we call ¢ the image of s under f.

The concept is hardly a new one for any of us. Since grade school we
have constantly encountered mappings and functions, often in the form of
formulas. But mappings need not be restricted to sets of numbers. As we see
below, they can occur in any area.

Examples

1. Let S = {all men who have ever lived} and 7" = {all women who have ever
lived}. Define f: S — T by f(s) = mother of s. Therefore, f(John F. Ken-
nedy) = Rose Kennedy, and according to our definition, Rose Kennedy is
the image under f of John F. Kennedy.

2. Let S = {all legally employed citizens of the United States} and 7' = {posi-
tive integers}. Define, for s € S, f(s) by f(s) = Social Security Number of s.
(For the purpose of this text, let us assume that all legally employed citizens
of the United States have a Social Security Number.) Then f defines a map-
ping from S to 7.
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3. Let S be the set of all objects for sale in a grocery store and let 7 = {all
real numbers}. Define f: § — T by f(s) = price of s. This defines a mapping
from S to 7.

4. Let S be the set of all integers and let 7' = S. Define f: S — T by f(m) =
2m for any integer m. Thus the image of 6 under this mapping, f(6), is given
by f(6) = 2 - 6 = 12, while that of —3, f(—3), is given by f(—3) = 2(-3) =
—6.1fs;,s, € Sarein S and f(s,) = f(s,), what can you say about s, and s,?
5. Let S = T be the set of all real numbers; define f: S — T by f(s) = s2.
Does every element of 7' come up as an image of some s € §? If not, how
would you describe the set of all images {f(s) |s € S}? When is f(s;) =
f(52)?

6. Let S = T be the set of all real numbers; define f: S — T by f(s) = s°. This
is a function from S to 7. What can you say about {f(s) |s € S}? When is
f(s1) = f(s2)?

7. Let T be any nonempty set and let S = 7 X T, the Cartesian product of T
with itself. Define f: T X T — T by f(t,, t,) = t;. This mapping from 7 X T
to 7T is called the projection of T X T onto its first component.

8. Let S be the set of all positive integers and let 7 be the set of all positive
rational numbers. Define f: S X § — T by f(m, n) = m/n. This defines a
mapping from S X S to 7. Note that f(1, 2) = 3 while f(3,6) = 2 = } =
f(1, 2), altlfough (1, 2) # (3, 6). Describe the subset of § X S consisting of
those (a, b) such that f(a, b) = 3.

The mappings to be defined in Examples 9 and 10 are mappings that
occur for any nonempty sets and play a special role.
9. Let S, T be nonempty sets, and let 7, be a fixed element of 7. Define
f:S—> Tbyf(s) =t,for every s € §; fis called a constant function from
StoT.

10. Let S be any nonempty set and define i: S — S by i(s) = s for every
s € S. We call this function of S to itself the identity function (or identity map-
ping) on S. We may, at times, denote it by i (and later in the book, by e).

Now that we have the notion of a mapping we need some way of identi-
fying when two mappings from one set to another are equal. This is not
God given; it is for us to decide how to declare f = g where f: S — T and
g: S — T. What is more natural than to define this equality via the actions of
f and g on the elements of §? More precisely, we declare that f = g if and
only if f(s) = g(s) for every s € S. If S is the set of all real numbers and f is
defined on S by f(s) = s* + 2s + 1, while g is defined on S by g(s) =
(s + 1)% our definition of the equality of f and g is merely a statement of the
familiar identity (s + 1) = 5% + 25 + 1.
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Having made the definition of equality of two mappings, we now want
to single out certain types of mappings by the way they behave.

Definition. The mapping f: S — T is onto or surjective if everyt € T
is the image under f of some s € §; that is, if and only if, given ¢t € T, there
exists an s € S such that t = f(s).

In the examples we gave earlier, in Example 1 the mapping is not onto,
since not every woman that ever lived was the mother of a male child. Simi-
larly, in Example 2 the mapping is not onto, for not every positive integer is
the Social Security Number of some U.S. citizen. The mapping in Example 4
fails to be onto because not every integer is even; and in Example 5, again,
the mapping is not onto, for the number —1, for instance, is not the square of
any real number. However, the mapping in Example 6 is onto because every
real number has a unique real cube root. The reader can decide whether or
not the given mappings are onto in the other examples.

If we define f(S) = {f(s) € T|s € S}, another way of saying that the
mapping f: S — T is onto is by saying that f(S) = T.

Another specific type of mapping plays an important and particular
role in what follows.

Definition. A mapping f: S — T is said to be one-to-one (written 1-1)
or injective if for s; # s, in S, f(s;) # f(s,) in T. Equivalently, fis 1-1 if
f(s,) = f(s,) implies that s, = s,.

In other words, a mapping is 1-1 if it takes distinct objects into distinct
images. In the examples of mappings we gave earlier, the mapping of Example
1 is not 1-1, since two brothers would have the same mother. However in Ex-
ample 2 the mapping is 1-1 because distinct U.S. citizens have distinct Social
Security numbers (provided that there is no goof-up in Washington, which is
unlikely). The reader should check if the various other examples of mappings
are 1-1.

Given a mapping f: S — T and a subset A C 7, we may want to look at
B = {s € S|f(s) € A}; we use the notation f~'(A) for this set B, and call
F~1(A) the inverse image of A under f. Of particular interest is f~!(¢), the in-
verse image of the subset {¢} of T consisting of the element ¢ € T alone. If
the inverse image of {¢} consists of only one element, say s € S, we could try
to define f~!(¢) by defining f!(¢) = 5. As we note below, this need not be a
mapping from 7 to S, but is so if fis 1-1 and onto. We shall use the same no-
tation f ! in cases of both subsets and elements. This f~! does not in general
define a mapping from 7 to S for several reasons. First, if f is not onto, then
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there is some ¢ in T which is not the image of any element s, so f~!(¢t) = &.
Second, if f is not 1-1, then for some ¢ € T there are at least two distinct
s; # S, in S such that f(s;) = t = f(s,). So f~'(¢) is not a unique element of
S—something we require in our definition of mapping. However, if f is both
1-1 and onto T, then f~! indeed defines a mapping of T onto S. (Verify!) This
brings us to a very important class of mappings.

Definition. The mapping f: S — T is said to be a 1-1 correspondence
or bijection if fis both 1-1 and onto.

Now that we have the notion of a mapping and have singled out various
types of mappings, we might very well ask: “Good and well, but what can we
do with them?” As we shall see in a moment, we can introduce an operation
of combining mappings in certain circumstances.

Consider the situation g: S — T'and f: T — U. Given an element s € §,
then g sends it into the element g(s) in T’; so g(s) is ripe for being acted on
by f. Thus we get an element f(g(s)) € U. We claim that this procedure pro-
vides us with a mapping from S to U. (Verify!) We define this more formally
in the

Definition. Ifg:S — Tand f: T — U, then the composition (or prod-
uct), denotéd by fog, is the mapping fog:S — U defined by (fog)(s) =
f(g(s)) for every s € S.

Note that to compose the two mappings f and g—that is, for fo g to
have any sense—the terminal set, T, for the mapping g must be the initial set
for the mapping f. One special time when we can always compose any two
mappings is when S = T = U, that is, when we map S into itself. Although
special, this case is of the utmost importance.

We verify a few properties of this composition of mappings.

Lemmal3.1l. Ifh:S—T,g:T— U,and f:U— V,then fo(goh) =
(fog)eoh.

Proof. How shall we go about proving this lemma? To verify that two
mappings are equal, we merely must check that they do the same thing to
every element. Note first of all that both fe (g° h) and (f° g) ° h define map-
pings from S to V, so it makes sense to speak about their possible equality.

Our task, then, is to show that for every s € S, (fe(g°h))(s) =
((fog) ° h)(s). We apply the definition of composition to see that

(fo(gom)(s) = f((g°h)(s)) = fg(h(s))).
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Unraveling

((feg)eh)(s) = (feg)(h(s)) = f(g(h(s))),

we do indeed see that

(fe(gohm)(s) = ((fog)eh)(s)
for every s € S. Consequently, by definition, fe (g°h) = (feg)°h.[]

(The symbol [] will always indicate that the proof has been completed.)

This equality is described by saying that mappings, under composition,
satisfy the associative law. Because of the equality involved there is really no
need for parentheses, so we write fo (ge°h) as fegeh.

Lemma 1.3.2. Ifg:S— Tandf:T— U are both 1-1, then feg: S—> U
is also 1-1.

Proof. Let us suppose that (f°g)(s;) = (f° g)(s,); thus, by definition,
f(g(sy) = f(g(s,)). Since fis 1-1, we get from this that g(s;) = g(s,); how-
ever, g is also 1-1, thus s; = s, follows. Since (f°g)(s;) = (f°g)(s,) forces
s; = §,, the mapping fo gis 1-1. [J

We leave the proof of the next Remark to the reader.

Remark. If g: S —» T and f: T — U are both onto, then feg:S —> Uis
also onto.

An immediate consequence of combining the Remark and Lemma
1.3.2 is to obtain

Lemma 1.33. If g:S§ — T and f: T — U are both bijections, then
feg:S8 — Uis also a bijection.

If fis a 1-1 correspondence of S onto T, then the “object” f™!: T — §
defined earlier can easily be shown to be a 1-1 mapping of 7 onto S. In this
case it is called the inverse of f. In this situation we have

Lemma 1.3.4. Iff:S — Tis a bijection, then fof ! =irand f lof=
is, where ig and i; are the identity mappings of S and 7, respectively.

Proof. We verify one of these. If t € T, then (fof 1)) = f(f1(r)).
But what is f~!(£)? By definition, f~!(¢) is that element s, € S such that
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t = f(so). So f(f1(t)) = f(sg) = t. In other words, (fof~')(¢) = ¢ for every
t € T; hence fo f~! = iy, the identity mapping on 7. (]

We leave the last result of this section for the reader to prove.

Lemma 1.3.5. If f: S — T and i is the identity mapping of 7 onto it-
self and i is that of S onto itself, then iz°f = fand foig = f.

PROBLEMS

Easier Problems

1. For the given sets S, T determine if a mapping f: S — T is clearly and un-
ambiguously defined; if not, say why not.
(a) S = set of all women, 7" = set of all men, f(s) = husband of s.
(b) S = set of positive integers, 7 = S, f(s) = s — 1.
(c) S = set of positive integers, T = set of nonnegative integers, f(s) =
s — 1.
(d) S = set of nonnegative integers, T = S, f(s) =s — 1.
(e) S =set of all integers, T =S, f(s) =s — 1.
@® S ="set of all real numbers, T = S, f(s) = Vs.
(g) S = set of all positive real numbers, T = S, f(s) = Vs.

2. In those parts of Problem 1 where f does define a function, determine if
it is 1-1, onto, or both.
*3, If fis a 1-1 mapping of S onto T, prove that f~! is a 1-1 mapping of T
onto S.
*4, If fis a 1-1 mapping of S onto 7, prove that f~' o f = i
5. Give a proof of the Remark after Lemma 1.3.2.
*6. If f: S—> Tisontoandg: T—> Uandh: T — Uaresuchthatgef= hef,
prove that g = h.
*. fg:S—>T,h:S—> T,and if f: T — U is 1-1, show that if fog = feoh,
then g = h.
8. Let S be the set of all integers and 7 = {1, —1}; f: S — T is defined by
f(s) = lifsiseven, f(s) = —1if s is odd.
(a) Does this define a function from S to T'?
(b) Show that f(s; + s,) = f(s1)f(s,). What does this say about the inte-
gers?
(¢) Is f(sy52) = f(s1)f(s,) also true?
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9. Let S be the set of all real numbers. Define f: S — S by f(s) = 52, and
g:S5—>Sbyg(s) =s + 1.
(a) Find fog.
(b) Findgef.
(©) Isfog=g°f?

10. Let S be the set of all real numbers and for a, b € S, where a # 0; define
fou(s) = as + b.
(a) Show that f, ,°f. , = f,, for some real u, v. Give explicit values for

u,v in terms of a, b, ¢, and d.

(b) Is f;z,b ofc,d = fc,d ofa,b alwayS?
(¢c) Find all f, , such that f, ,° 11 = f11°fp-
(d) Show that f;} exists and find its form.

11. Let S be the set of all positive integers. Define f: S — S by f(1) = 2,
f(2) = 3,f(3) =1, and f(s) = s for any other s € S. Show that fo fo f=
is. What is f ! in this case?

Middle-Level Problems

12. Let S be the set of nonnegative rational numbers, that is, § = .{m/n |m, n
nonnegative integers, n # 0}, and let T be the set of all integers.

(a) Does f: S — T defined by f(m/n) = 2™3" define a legitimate function
from S to 77

(b) If not, how could you modify the definition of f so as to get a legiti-
mate function?

13. Let S be the set of all positive integers of the form 23", where m > 0,
n > 0, and let 7 be the set of all rational numbers. Define f: S — T by
f(2™3") = m/n. Prove that f defines a function from S to 7. (On what
properties of the integers does this depend?)

14. Let f: S — S, where § is the set of all integers, be defined by f(s) =
as + b, where a, b are integers. Find the necessary and sufficient condi-
tions on a, b in order that fo f = i.

15. Find all f of the form given in Problem 14 such that fo fo f = i,

16. If fis a 1-1 mapping of S onto itself, show that (f~!)~! = f.

17. If S is a finite set having m > 0 elements, how many mappings are there
of § into itself?

18. In Problem 17, how many 1-1 mappings are there of § into itself?

19. Let S be the set of all real numbers, and define f: S — S by f(s) =
s? + as + b, where a, b are fixed real numbers. Prove that for no values
ata, b can f be onto or 1-1.
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20.

21.

22.

Let S be the set of all positive real numbers. For positive reals a, ¢ and
nonnegative reals b, d, is it ever possible that the mapping f: S — § de-
fined by f(s) = (as + b)/(cs + d) satisfies f° f = i;? Find all such q, b, ¢, d
that do the trick.

Let S be the set of all rational numbers and let f,, : S — § be defined by
fop(s) = as + b, where a # 0, b are rational numbers. Find all f, ; of this
form satisfying f. ;°fo » = fo 5 ° . a fOT every f, ;.

Let S be the set of all integers and a, b, ¢ rational numbers. Define
f: S — S by f(s) = as® + bs + c. Find necessary and sufficient conditions
on a, b, c, so that f defines a mapping on S [Note: a, b, ¢ need not be inte-
gers; for example, f(s) = 3s(s + 1) = 35 + 35 does always give us an in-
teger for integral s.]

Harder Problems

23.

24.

25.

26.
27.

28.

29.

30.

31.

Let S be the set of all integers of the form 2"3", m = 0,n = 0, and let T
be the set of all positive integers. Show that there is a 1-1 correspondence
of S onto T.
Prove that there is a 1-1 correspondence of the set of all positive integers
onto the.set of all positive rational numbers.
Let S be the set of all real numbers and 7 the set of all positive reals.
Find a 1-1 mapping f of S onto T such that f(s; + s,) = f(s;) f(s,) for all
51,8, € S.
For the fin Problem 25, find f~! explicitly.
If f, g are mappings of S into S and f° g is a constant function, then
(a) What can you say about f if g is onto?
(b) What can you say about g if fis 1-1?
If S is a finite set and f is a mapping of S onto itself, show that f must be
1-1.
If S is a finite set and fis a 1-1 mapping of S into itself, show that f must
be surjective.
If S is a finite set and fis a 1-1 mapping of S, show that for some integer
n>0,

fofefe-of=is

n times

If S has m elements in Problem 30, find an n > 0 (in terms of m) that
works simultaneously for all 1-1 mappings of S into itself.
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4. A(S) (THE SET OF 1-1 MAPPINGS OF S ONTO ITSELF)

We focus our attention in this section on particularly nice mappings of a non-
empty set, S, into itself. Namely, we shall consider the set, A(S), of all 1-1 map-
pings of S onto itself. Although most of the concern in the book will be in the
case in which S is a finite set, we do not restrict ourselves to that situation here.

When S has a finite number of elements, say n, then A (S) has a special
name. It is called the symmetric group of degree n and is often denoted by S,,.
Its elements are called permutations of S. If we are interested in the structure
of §,, it really does not matter much what our underlying set § is. So, you
can think of S as being the set {1, ..., n}. Chapter 3 will be devoted to a
study, in some depth, of §,. In the investigation of finite groups, S, plays a
central role.

There are many properties of the set A(S) on which we could concen-
trate. We have chosen to develop those aspects here which will motivate the
notion of a group and which will give the reader some experience, and feel-
ing for, working in a group-theoretic framework. Groups will be discussed in
Chapter 2.

We begin with a result that is really a compendium of some of the re-
sults obtained in Section 3.

Lemma 1.4.1. A(S) satisfies the following:

(a) f,g € A(S) implies that fo g € A(S).

(b) f,8 h € A(S) implies that (feg)°ch = fo(g°h).

(c) There exists an element—the identity mapping i—such that fei =
iof=fforevery f€ A(S).

(d) Given f € A(S), there exists a g € A(S) (g = f7') such that fog =
gef=i
Proof. All these things were done in Section 3, either in the text mate-

rial or in the problems. We leave it to the reader to find the relevant part of
Section 3 that will verify each of the statements (a) through (d). []

We should now like to know how many elements there are in A(S)
when S is a finite set having n elements. To do so, we first make a slight di-
gression.

Suppose that you can do a certain thing in r different ways and a sec-
ond independent thing in s different ways. In how many distinct ways can
you do both things together? The best way of finding out is to picture this in
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a concrete context. Suppose that there are r highways running from Chicago
to Detroit and s highways running from Detroit to Ann Arbor. In how many
ways can you go first to Detroit, then to Ann Arbor? Clearly, for every road
you take from Chicago to Detroit you have s ways of continuing on to Ann
Arbor. You can start your trip from Chicago in r distinct ways, hence you
can complete it in

sSt+s+s+ - +§5=17rs
r times

different ways.

It is fairly clear that we can extend this from doing two independent
things to doing m independent ones, for an integer m > 2. If we can do the
first things in r, distinct ways, the second in r, ways, ..., the mth in r,, dis-
tinct ways, then we can do all these together in r,r, . . . r,, different ways.

Let’s recall something many of us have already seen:

Definition. If » is a positive integer, then n! (read “n factorial”) is de-
finedbyn!=1-2-3---n.

Lemma 1.4.2. If S has n elements, then A(S) has n! elements.

Proof Let f € A(S), where § = {x4, x5, ..., x,}. How many choices
does fhave as a place to send x,? Clearly n, for we can send x; under fto any
element of S. But now f is not free to send x, anywhere, for since fis 1-1, we
must have f(x;) # f(x,). So we can send x, anywhere except onto f(x;).
Hence f can send x, into n — 1 different images. Continuing this way, we see
that f can send x; into n — (i — 1) different images. Hence the number of
such fsisn(n —1)(n—2)---1=n!]

Example

The number n! gets very large quickly. To be able to see the picture in its en-
tirety, we look at the special case n = 3, where n! is still quite small.

Consider A(S) = S5, where S consists of the three elements x,, x,, x;. We
list all the elements of S5, writing out each mapping explicitly by what it does
to each of x,, x,, x;.

[1X]—> X, Xy > Xy, X3—> X3.
fix) = x5, x5 = X3, X3 = Xy

8:X17> Xg, X 7> Xy, X3 > X3.

R N

. gofix; = xy,x, > x3,x3—> x,. (Verify!)
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5. fegixy—x3,x, > x5, x3 — x;. (Verify!)

6. fof :x;—>x3,x, > xq,x3 = x,.(Verify!)

Since we have listed here six different elements of S;, and §; has only
six elements, we have a complete list of all the elements of S;. What does
this list tell us? To begin with, we note that fo g # ge f, so one familiar rule
of the kind of arithmetic we have been used to is violated. Since g € S; and
g € S5, we must have ge° g also in §;. What is it? If we calculate g° g, we
easily get g ° g = i. Similarly, we get

(fog)o(feg) =i=1(g°f)°(g°f).

Note also that fo(fef) = i, hence f~! = fof. Finally, we leave it to the
reader to show that ge f=fleg.

It is a little cumbersome to write this product in A (S) using the °. From
now on we shall drop it and write f° g merely as fg. Also, we shall start using
the shorthand of exponents, to avoid expressions like fo fo fo---of. We de-
fine, for f € A(S), f® = i, f> = fo f = ff, and so on. For negative exponents
—n we define f~" by f~" = (f')", where n is a positive integer. The usual
rules of exponents prevail, namely f'f* = f"** and (f")° = f". We leave
these as exercises—somewhat tedious ones at that—for the reader.

Example

Do not jump to conclusions that all familiar properties of exponents go over.
For instance, in the example of the f, g € §; defined above, we claim that
(fg)* # fg> To see this, we note that

J8 1 X1 = X3, Xy = X5, X3 > Xy,

so that (fg)*:x; — xq, X, = X,, X3 —> X3, that is, (fg)*> = i. On the other
hand, f2 # i and g = i, hence f?g? = f% # i, whence (fg)* # f2g? in this case.

However, some other familiar properties do go over. For instance, if
f, g, h are in A(S) and fg = fh, then g = h. Why? Because, from fg = fh we
have f~'(fg) = f~'(fh); therefore, g = ig = (f7'f)g = 7' (fg) = f~'(fh) =
(f7'f)h = ih = h. Similarly, gf = hf implies that g = h. So we can cancel an
element in such an equation provided that we do not change sides. In S5 our
f, g satisfy gf = f~'g, but since f # f~! we cannot cancel the g here.

PROBLEMS

Recall that fg stands for f° g and, also, what f” means. S, without subscripts,
will be a nonempty set.
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Easier Problems

1. If s; # s, are in S, show that there is an f € A(S) such that f(s;) = s,.
2. Ifs,€S,let H={f€ A(S) | f(s,) = 5,}. Show that:

(a) i€ H.

(b) If f,g € H, then fg € H.

(¢) IffE H, thenf' € H.

3. Suppose that s; # s, are in S and f(s;) = s5,, where f€ A(S). Then if H is
as in Problem 2 and K = {g € A(S) | g(s,) = s,}, show that:
(@) If g€ K, then f'gf € H.
(b) If h € H, then there is some g € K such that h = f~1gf.

4. If f, g, h € A(S), show that (f'gf)(f'hf) = f'(gh)f. What can you say
about (f~'gf)"?

5. If f, g € A(S) and fg = gf, show that:
(@) (fo) = f%"
(b) (f)' =f"g"

6. Push the result of Problem 5, for the same f and g, to show that (fg)” =
f™g™ for all integers m.

*7. Verify. the rules of exponents, namely f'f* = f "*sand (f")° = f" for
f € A(S) and positive integers r, s.
8. If f, g € A(S) and (fg)* = f°g? prove that fg = gf.
9. If S = {x;, x,, x5, x4}, let f, g € S, be defined by

fix1 = X5, X5 = X3, X3 > X4, X4 = Xy,
and

8 X1 7> Xy Xp 7> Xq, X3 7> X3, X4 7> Xy.

Calculate:
@) 1%, f*.
(b) g% 8.
(o) fg.
(d) gf.
(e) (fg)’, (gf)’.
®f g
10. If f € S, show that f® = i.
11. Can you find a positive integer m such that f" = iforall f€ §,?
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Middle-Level Problems

*12. If f € §,, show that there is some positive integer k, depending on f, such
that f* = i. (Hint: Consider the positive powers of f.)
*13. Show that there is a positive integer ¢ such that f* = i forall f € §,.

14. If m < n, show that there is a 1-1 mapping F: S,, — S, such that F(fg) =
F(f)F(g)forallf, g€ S§,,.

15. If S has three or more elements, show that we can find f, g € A(S) such
that fg # gf.

16. Let S be an infinite set and let M C A(S) be the set of all elements
f € A(S) such that f(s) # s for at most a finite number of s € S. Prove
that:

(a) f, g € M implies that fg € M.
(b) f € M implies that f~! € M.

17. For the situation in Problem 16, show, if f € A(S), that f'Mf =
{f'gf| g € M) must equal M.

18. Let S D T and consider the subset U(T) = {f € A(S) | f(¢t) € T for every
t € T}. Show that:

(@) i e U(T).
(b) f,g € U(T) implies that fg € U(T).

19. If the S in Problem 18 has n elements and 7 has m elements, how
many elements are there in U(T)? Show that there is a mapping
F:U(T)— S,, such that F(fg) = F(f)F(g) for f, g € U(T) and F is onto
S

20. If m < n, can F in Problem 19 ever be 1-1? If so, when?

21. In S, show that the mapping f defined by

Fixi =X, Xy > X3, X35> X4, " 00 Xy > X, Xy —> Xy

[i.e., f(x;) = x;41 ifi <n, f(x,) = x;] can be written as f = g,8, - - * 8,1
where each g; € S, interchanges exactly two elements of S = {x,, ..., x,},
leaving the other elements fixed in S.

Harder Problems

22. If f€ S, show that f = h,h, - - - h,, for some h; € S, such that k7 = i.
*23. Call an element in S, a transposition if it interchanges two elements, leav-
ing the others fixed. Show that any element in S, is a product of transpo-
sitions. (This sharpens the result of Problem 22.)
24. If n is at least 3, show that for some fin §,, f cannot be expressed in the
form f = g* for any gin S,
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25. If f € S, is such that f # i but f> = i, show that we can number the
elements of S in such a way that f(x,) = x,, f(x,) = x3, f(x3) = xq,
f(xs) = x5, f(xs) = X6, f(x6) = X4, -+, [(X3k41) = Xap42, f(X3p12) = X3pa3,
f(x3x43) = x3,41 for some k, and, for all the other x, € S, f(x,) = x,.

26. View a fixed shuffle of a deck of 52 cards as a 1-1 mapping of the deck
onto itself. Show that repeating this fixed shuffle a finite (positive) num-
ber of times will bring the deck back to its original order.

*27. If f € A(S), call, for s € S, the orbit of s (relative to f) the set O(s) =
{f7(s) | all integers j}. Show that if 5, ¢ € S, then either O(s) N O(t) = & or
O(s) = O(1).
28. If S = {x;, x,,..., x1,} and f € S}, is defined by f(x,)) = x,,;ifi =1,2,...,
11 and f(x,,) = x,, find the orbits of all the elements of S (relative to f).
29. If f € A(S) satisfies f> = i, show that the orbit of any element of S has
one or three elements.

*30. Recall that a prime number is an integer p>1 such that p cannot be fac-
tored as a product of smaller positive integers. If f € A(S) satisfies f? = i,
what can you say about the size of the orbits of the elements of S relative to
f? What property of the prime numbers are you using to get your answer?

31. Prove that if S has more than two elements, then the only elements f; in
A(S) such that f; f = ff, for all f € A(S) must satisfy f, = i.

*32. We say. that g € A(S) commutes with f € A(S) if fg = gf. Find all
the elements in A(S) that commute with f: S — § defined by
f(x) = x,,f(x;) = xq,and f(s) = sifs # xq, x,.

33. In S, show that the only elements commuting with f defined by f(x;) =
x;.1if i <n, f(x,) = x;, are the powers of f, namely i = f°, f, f2,..., f* L
34. For f€ A(S),let C(f) = {g € A(S) | fg = gf}. Prove that:
(a) g, h € C(f) implies that gh € C(f).
(b) g € C(f) implies that g™' € C(f).
(¢) C(f) is not empty.

5. THE INTEGERS

The mathematical set most familiar to everybody is that of the positive inte-
gers 1,2, ..., which we shall often call N. Equally familiar is the set, Z, of all
integers—positive, negative, and zero. Because of this acquaintance with Z,
we shall give here a rather sketchy survey of the properties of Z that we shall
use often in the ensuing material. Most of these properties are well known to
all of us; a few are less well known.

The basic assumption we make about the set of integers is the
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Well-Ordering Principle. Any nonempty set of nonnegative integers
has a smallest member.

More formally, what this principle states is that given a nonempty set V
of nonnegative integers, there is an element vy, € V such that vy = v for every
v € V. This principle will serve as the foundation for our ensuing discussion
of the integers.

The first application we make of it is to show something we all know
and have taken for granted, namely that we can divide one integer by an-
other to get a remainder that is smaller. This is known as Euclid’s Algorithm.
We give it a more formal statement and a proof based on well-ordering.

Theorem 1.5.1 (Euclid’s Algorithm). If m and »n are integers with
n > (, then there exist integers g and r, with 0 = r < n, such that m = gn + r.

Proof. Let W be the set of m — tn, where ¢ runs through all the
integers, i.e., W = {m — tn|t € Z}. Note that W contains some nonnegative
integers, for if ¢ is large enough and negative, then m — m > 0. Let
V = {v € W|v = 0}; by the well-ordering principle V has a smallest element,
r.Since r € V,r =0, and r = m — gn for some g (for that is the form of all
elements in W D V). We claim that r < n. If not, r = m — gn = n, hence
m—(q+ 1)n=0.Butthisputsm — (g + )nin V,yetm — (g + Dn <r,
contradicting the minimal nature of r in V. With this, Euclid’s Algorithm is
proved. []

Euclid’s Algorithm will have a host of consequences for us, especially
about the notion of divisibility. Since we are speaking about the integers,
be it understood that all letters used in this section will be integers. This will
save a lot of repetition of certain phrases.

Definition. Given integers m # 0 and n we say that m divides n, writ-
ten as m | n, if n = cm for some integer c.

Thus, for instance, 2 | 14, (=7) | 14, 4| (—16). If m | n, we call m a divi-
sor or factor of n, and n a multiple of m. To indicate that m is not a divisor of
n, we write m | n; so, for instance, 3/ 5.

The basic elementary properties of divisibility are laid out in

Lemma 1.5.2. The following are true:

(a) 1|n for all n.
(b) If m # 0, then m | 0.
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(c) If m|nandn|q, thenm|q.

(d) If m|nand m | q, then m | (un + vq) for all u, v.
() fm|1,thenm =1o0orm= —1.

(f) f m|nand n|m, thenm = *n.

Proof. The proofs of all these parts are easy, following immediately
from the definition of m | n. We leave all but Part (d) as exercises but prove
Part (d) here to give the flavor of how such proofs go.

So suppose that m | n and m | q. Then n = cm and ¢ = dm for some c
and d. Therefore, un + vq = u(cm) + v(dm) = (uc + vd)m. Thus, from the
definition, m | (un + vq). [

Having the concept of a divisor of an integer, we now want to introduce
that of the greatest common divisor of two (or more) integers. Simply
enough, this should be the largest possible integer that is a divisor of both in-
tegers in question. However, we want to avoid using the size of an integer—
for reasons that may become clear much later when we talk about rings. So
we make the definition in what may seem as a strange way.

Definition. Given a, b (not both 0), then their greatest common divi-
sor c is defined by:

(a) ¢>0.
(b) c|aandc]|b.
(c) Ifd|aand d|b,thend]c.

We write this ¢ as ¢ = (a, b).

In other words, the greatest common divisor of a and b is the positive
number ¢ which divides a and b and is divisible by every d which divides a
and b.

Defining something does not guarantee its existence. So it is incumbent
on us to prove that (a, b) exists, and is, in fact, unique. The proof actually
shows more, namely that (a, b) is a nice combination of a and b. This combi-
nation is not unique; for instance,

(24,9) =3 =3-9 + (—1)24 = (—5)9 + 2 - 24.

Theorem 1.5.3. If a, b are not both 0, then their greatest common divi-
sor ¢ = (a, b) exists, is unique, and, moreover, ¢ = mya + nyb for some suit-
able m, and n,,.
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Proof. Since not both a and b are 0, the set A = {ma + nb|m, n € Z)
has nonzero elements. If x € A and x < 0, then —x i1s alsoin A and —x > 0,
for if x = ma + n,b, then —x = (—my)a + (—n;)b, so is in A. Thus A has
positive elements; hence, by the well-ordering principle there is a smallest
positive element, ¢, in A. Since ¢ € A, by the form of the elements of A we
know that ¢ = mya + nyb for some my, n,.

We claim that c is our required greatest common divisor. First note that
if d|a and d| b, then d | (mya + nyb) by Part (d) of Lemma 1.5.2, that is,
d | c. So, to verify that c is our desired element, we need only show that c | a
and c | b.

By Euclid’s Algorithm, a = gc + r, where 0 = r < ¢, that is, a =
qg(mga + ngb) + r. Therefore, r = —gnyb + (1 — gmy)a. So r is in A. But
r < cand is in A, so by the choice of c, r cannot be positive. Hence r = 0; in
other words, a = gc and so c | a. Similarly, ¢ | b.

For the uniqueness of c, if ¢ > 0 also satisfied ¢ | a, ¢| b and d | ¢ for all d
such that d | a and d | b, we would have ¢|c and c | t. By Part (f) of Lemma
1.5.2 we get that t = ¢ (since both are positive). []

Let’s look at an explicit example, namely a = 24, b = 9. By direct exami-
nation we know that (24, 9) = 3; note that 3 = 3-9 + (—1)24. What is
(—24,9)?

How is this done for positive numbers a and b which may be quite large?
If b > a, interchange a and b so that a > b > 0. Then we can find (a, b) by

1. observing that (a, b) = (b, r) where a = gb + r with 0 = r < b (Why?);
2. finding (b, r), which now is easier since one of the numbers is smaller
than before.

So, for example, we have

(100, 28) = (28, 16) since 100 = 3 (28) + 16
( 28, 16) = (16, 12) since 28 = 1(16) + 12
( 16,12) = (12, 4) since 16 =1(12) + 4

This gives us
(100, 28) = (12, 4) = 4.
It is possible to find the actual values of m, and n, such that

4=m, 100 + n, 28
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by going backwards through the calculations made to find 4:

Since 16 =1 (12) + 4, 4= 16+ (—-1)12

Since 28 =1 (16) + 12, 12= 28+ (—-1)16

Since 100 = 3 (28) + 16, 16 =100 + (—3) 28
But then

4=16+(-1)12=16 + (—1)(28 + (—1) 16)
=(-1)28 + (2) 16 = (—1) 28 + (2)(100 + (—3) 28)
=(2)100 + (=7) 28
so that my =2 and n, = —7.
This shows how Euclid’s Algorithm can be used to compute (a, b) for
any positive integers a and b.
We shall include some exercises at the end of this section on other

properties of (a, b).
We come to the very important

Definition. We say that a and b are relatively prime if (a, b) = 1.

So the integers a and b are relatively prime if they have no nontrivial
common factor. An immediate corollary to Theorem 1.5.3 is

Theorem 1.5.4. The integers a and b are relatively prime if and only if
1 = ma + nb for suitable integers m and n.

Theorem 1.5.4 has an immediate consequence

Theorem 1.5.5. If a and b are relatively prime and a | bc, then a | c.

Proof. By Theorem 1.54, ma + nb = 1 for some m and n, hence
(ma + nb)c = c, that is, mac + nbc = c. By assumption, a | bc and by obser-
vation a | mac, hence a | (mac + nbc) and so a | c. [

Corollary. If b and c are both relatively prime to a, then bc is also rel-
.atively prime to a.

Proof. We pick up the proof of Theorem 1.5.5 at mac + nbc = c. If d =
(a, bc), then d | a and d | bc, hence d | (mac + nbc) = c. Since d|a and d | c
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and (a, ¢) = 1, we get that d = 1. Since 1 = d = (a, bc), we have that bc is
relatively prime to a. []

We now single out an ultra-important class of positive integers, which
we met before in Problem 30, Section 4.

Definition. A prime number, or a prime, is an integer p > 1, such that
for any integer a either p | a or p is relatively prime to a.

This definition coincides with the usual one, namely that we cannot fac-
tor p nontrivially. For if p is a prime as defined above and p = ab where
1 = a <p, then (a, p) = a (Why?) and p does not divide a since p > a. It fol-
lows that @ = 1, so p = b. On the other hand, if p is a prime in the sense that
it cannot be factored nontrivially, and if a is an integer not relatively prime to
D, then (a, b) is not 1 and it divides a and p. But then (a, b) equals p, by our
hypothesis, so p divides a.

Another result coming out of Theorem 1.5.5 is

Theorem 1.5.6. If p is a prime and p | (aya, - - - a,), then p|a; for
some i with1 =i < n.

Proof. 1f p|a,, there is nothing to prove. Suppose that p/a,; then p
and a; are relatively prime. But p|a;(a, - - - a,), hence by Theorem 1.5.5,
pla,---a, Repeatthe argument just given on a,, and continue. [

The primes play a very special role in the set of integers larger than 1 in
that every integer n > 1 is either a prime or is the product of primes. We
shall show this in the next theorem. In the theorem after the next we shall
show that there is a uniqueness about the way n > 1 factors into prime fac-
tors. The proofs of both these results lean heavily on the well-ordering prin-
ciple.

Theorem 1.5.7. If n > 1, then either » is a prime or # is the product of
primes.

Proof. Suppose that the theorem is false. Then there must be an
intger m > 1 for which the theorem fails. Therefore, the set M for which the
theorem fails is nonempty, so, by the well-ordering principle, M has a least
element m. Clearly, since m € M, m cannot be a prime, thus m = ab, where
l1<a<mand1 < b < m. Because a < m and b < m and m is the least
element in M, we cannot have a € M or b € M. Since a & M, b & M, by the
definition of M the theorem must be true for both a and b. Thus a and b are
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primes or the product of primes; from m = ab we get that m is a product
of primes. This puts m outside of M, contradicting that m € M. This proves
the theorem. []

We asserted above that there is a certain uniqueness about the decom-
position of an integer into primes. We make this precise now. To avoid trivi-
alities of the kind 6 = 2 -3 = 3 - 2 (so, in a sense, 6 has two factorizations into
the primes 2 and 3), we shall state the theorem in a particular way.

Theorem 1.5.8. Given n > 1, then there is one and only one way to
write n in the form n = p{'p%* - - - pi*, where p; < p, < --- < p, are primes
and the exponents a,, a,, . . ., a, are all positive.

Proof. We start as we did above by assuming that the theorem is
false, so there is a least integer m > 1 for which it is false. This m must have

two distinct factorizations as m = p{p% .- -p¥ = ghgs- - g5 where
P1<p, < <pp,q<q,<---<gq,are primes and where the exponents
a, ...,a,and by, ..., b, are all positive. Since p, | pj - - - pix = g5 - - - q%¢,

by Theorem 1.5.6 p, | ¢* for some i; hence, again by Theorem 1.5.6, p, | q;,
hence p, = g;. By the same token g, = p; for some j; thus p; = p; =
q; = q; = p;. This gives us that p; = q,. Now since m/p; < m, m/p,
has the unique factorization property. But m/p, = p{* 'p3 - pix =
ph~1 gh2 .. gbe and since m/p, can be factored in one and only one way in
this form, we easily get k = €, p, = q,, ... , P = qx,a;, — 1 = by — 1,
a,=b,, ... ,a, = b,.So we see that the primes and their exponents arising
in the factorization of m are unique. This contradicts the lack of such unique-
ness for m, and so proves the theorem. []

What these last two theorems tell us is that we can build up the integers
from the primes in a very precise and well-defined manner. One would ex-
pect from this that there should be many—that 1s, an infinity—of primes.
This old result goes back to Euclid; in fact, the argument we shall give is due
to Euclid.

Theorem 1.5.9. There is an infinite number of primes.

Proof. If the result were false, we could enumerate all the primes in
Pi,Pa,-.-,Pr- Consider the integer g = 1 + p,p, - - pi. Since q > p; for
everyi =1,2,...,k, g cannot be a prime. Since p; / q, for we get a remain-
der of 1 on dividing g by p;, q is not divisible by any of p;,..., px. So g is
not a prime nor is it divisible by any prime. This violates Theorem 1.5.7,
thereby proving the theorem. []



28 Things Familiar and Less Familiar Ch. 1

Results much sharper than Theorem 1.5.9 exist about how many primes
there are up to a given point. The famous prime number theorem states that
for large n the number of primes less than or equal to »n is “more or less”
n/log, n, where this “more or less” is precisely described. There are many
open questions about the prime numbers.

PROBLEMS

Easier Problems

1. Find (a, b) and express (a, b) as ma + nb for:
(a) (116, —84).
(b) (85, 65).
(c) (72, 26).
(d) (72,25).
2. Prove all the parts of Lemma 1.5.2, except part (d).
3. Show that (ma, mb) = m(a, b) if m > 0.
4. Show that if a|m and b | m and (a, b) = 1, then (ab) | m.

5. Factor the following into primes.

(a) 36.

(b) 120.
(c¢) 720.
(d) 5040.

6. If m = pr---pi and n = p%r-- - phk where py,..., p, are distinct
primes and a4, ..., a, are nonnegative and b,, ..., b, are nonnegative,
express (m, n) as p{' - - - pi* by describing the ¢’s in terms of the a’s and
b’s.

*7. Define the least common multiple of positive integers m and n to be the
smallest positive integer v such that both m | v and n | v.
(a) Show that v = mn/(m, n).
(b) In terms of the factorization of m and n given in Problem 6, what is
v?

8. Find the least common multiple of the pairs given in Problem 1.

9. If m, n > 0 are two integers, show that we can find integers u, v with
—n/2 =< v = n/2such that m = un + v.

10. To check that a given integer n > 1 is a prime, prove that it is enough to
show that » is not divisible by any prime p with p = V.
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11. Check if the following are prime.

(a) 301.
(b) 1001.
(c) 473.
12. Starting with 2, 3, 5, 7,..., construct the positive integers 1 + 2-3,
1+2-3-5,1+2-3-5-7,... .Do you always get a prime number this

way?
Middle-Level Problems

13. If p is an odd prime, show that p is of the form:
(a) 4n + 1 or 4n + 3 for some n.
(b) 6n + 1 or 6n + 5 for some n.

14. Adapt the proof of Theorem 1.5.9 to prove:
(a) There is an infinite number of primes of the form 4n + 3.
(b) There is an infinite number of primes of the form 6n + 5.

15. Show that no integer u = 4n + 3 can be written as u = a> + b%, where
a, b are integers.

16. If T is an infinite subset of N, the set of all positive integers, show that
there is a 1-1 mapping of 7 onto N.

17. If p is a prime, prove that one cannot find nonzero integers a and b such
that a> = pb?. (This shows that \/1; is irrational.)

6. MATHEMATICAL INDUCTION

If we look back at Section 5, we see that at several places—for instance, in
the proof of Theorem 1.5.6—we say “argue as above and continue.” This is
not very satisfactory as a means of nailing down an argument. What is clear
is that we need some technique of avoiding such phrases when we want to
prove a proposition about all the positive integers. This is provided for us by
the Principle of Mathematical Induction; in fact, this will be the usual method
that we shall use for proving theorems about all the positive integers.

Theorem 1.6.1. Let P(n) be a statement about the positive integers
such that:

(a) P(1) is true.
(b) If P(k) happens to be true for some integer k = 1, then P(k + 1) is also
true.

Then P(n) is true for alln = 1.
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Proof. Actually, the arguments given in proving Theorems 1.5.7 and
1.5.8 are a prototype of the argument we give here.

Suppose that the theorem is false; then, by well-ordering, there is a
least integer m = 1 for which P(m) is not true. Since P(1) is true, m # 1,
hence m > 1. Now 1 = m — 1 < m, so by the choice of m, P(m — 1) must be
valid. But then by the inductive hypothesis [Part (b)] we must have that P(m)
is true. This contradicts that P(m) is not true. Thus there can be no integer
for which P is not true, and so the theorem is proved. []

We illustrate how to use induction with some rather diverse examples.

Examples

1. Suppose that n tennis balls are put in a straight line, touching each other.
Then we claim that these balls make n — 1 contacts.

Proof. 1f n = 2, the matter is clear. If for k£ balls we have kK — 1 con-
tacts, then adding one ball (on a line) adds one contact. So k + 1 balls would
have k contacts. So if P(n) is what is stated above about the tennis balls, we
see that if P(k) happens to be true, then so is P(k + 1). Thus, by the theo-
rem, P(n) is true for alln = 1. [

2.If pisaprime and p |aa, - a,,thenp|a;forsome 1 <i=n.

Proof. Let P(n) be the statement in Example 2. Then P(1) is true, for
if p | a,, it certainly divides a, for some 1 < i < 1.

Suppose we know that P(k) is true, and that p | a,a, - - - a, ay,. Thus,
by Theorem 1.5.6, since p | (a;a, - -- a;)a,., either p|a,,; (a desired con-
clusion) or p | a; - - - a, . In this second possibility, since P(k) is true we have
that p | a; for some 1 = i = k. Combining both possibilities, we get that p | a;
for some 1 = = k + 1. So Part (b) of Theorem 1.6.1 holds; hence P(n) is
true for alln = 1. [

3.Forn=1,1+2+---+n=3n(n+1).

Proof. If P(n) is the proposition that 1 +2 + --- + n = 3n(n + 1), then
P(1) is certainly true, for 1 = 3 (1 + 1). If P(k) should be true, this means that

1+2+ - +k=23%k+1).

The question is: Is P(k + 1) then also true, thatis,is1 + 2 + --- + k +
k+1D)=3G*k+D(k+1)+1)?Nowl +2+ - +k+(k+1)=
1+2+---k)y+(k+1)=3k(k+ 1)+ (k+1),since P(k) is valid. But
sk(k+ 1D+ (k+1)=23Kk(k+1)+ 2k + 1) =%k + 1)(k + 2), which
assures us that P(k + 1) is true. Thus the proposition 1 + 2 + --- + n =
zn(n + 1)istrue foralln = 1.1
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We must emphasize one point here: Mathematical induction is not a
method for finding results about integers; it is a means of verifying a resulit.
We could, by other means, find the formula given above for1 +2 + --- + n.

Part (b) of Theorem 1.6.1 is usually called the induction step.

In the problems we shall give some other versions of the principle of in-
duction.

PROBLEMS
Easier Problems

1. Prove that 12 + 22 + 32 + - - - + n*> = gn(n + 1)(2n + 1) by induction.

2. Prove that 1° + 2° + - - - + n® = n*(n + 1)? by induction.

3. Prove that a set having n = 2 elements has 3 n(n — 1) subsets having ex-
actly two elements.

4. Prove that a set having n = 3 elements has n(n — 1)(n — 2)/3! subsets
having exactly three elements.

5. If n = 4 and S is a set having n elements, guess (from Problems 3 and 4)
how many subsets having exactly 4 elements there are in S. Then verify
your guess using mathematical induction.

*6. Complete the proof of Theorem 1.5.6, replacing the last sentence by an
induction argument.

7. Ifa # 1,prove that 1 + a + a* + - -+ + a" = (a"*' — 1)/(a — 1) by induc-
tion.

8. By induction, show that

1 1 1 _n
12 237 " TamTD T a+1

*9. Suppose that P(n) is a proposition about positive integers n such that
P(n,) is valid, and if P(k) is true, so must P(k + 1) be. What can you say
about P(n)? Prove your statement.

*10. Let P(n) be a proposition about integers n such that P(1) is true and
such that if P(}) is true for all positive integers j < k, then P(k) is true.
Prove that P(n) is true for all positive integers n.

Middle-Level Problems

11. Give an example of a proposition that is not true for any positive integer,
yet for which the induction step [Part (b) of Theorem 1.6.1] holds.

12. Prove by induction that a set having n elements has exactly 2" subsets.
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13. Prove by induction on n that n’ — n is always divisible by 3.

14. Using induction on n, generalize the result in Problem 13 to: If p is a prime
number, then n? — n is always divisible by p. (Hint: The binomial theorem.)

15. Prove by induction that for a set having n elements the number of 1-1
mappings of this set onto itself is n!.

7. COMPLEX NUMBERS

We all know something about the integers, rational numbers, and real num-
bers—indeed, this assumption has been made for some of the text material
and many of the problems have referred to these numbers. Unfortunately,
the complex numbers and their properties are much less known to present-
day college students. At one time the complex numbers were a part of the
high school curriculum and the early college one. This is no longer the case.
So we shall do a rapid development of this very important mathematical set.

The set of complex numbers, C, is the set of all a + bi, where a, b are
real and where we declare:

1. a+ bi=c + difora,b,c dreal ifandonlyifa =cand b = d.
2. (a+bi) £ (ctdi)=(a=xc)+ (b=xd).
3. (a + bi)(c + di) = (ac — bd) + (ad + bc)i.

This last property—multiplication—can best be remembered by using
i* = —1 and multiplying out formally with this relation in mind.

For the complex number z = a + bi, a is called the real part of z and b
the imaginary part of z. If a is 0, we call z purely imaginary.

We shall write 0 + OiasOand a + Oi asa. Notethat z + 0 =z, 21 = 2
for any complex number z.

Given z = a + bi, there is a complex number related to z, which we
write as 7, defined by Z = a — bi. This complex number, Z, is called the
complex conjugate of z. Taking the complex conjugate gives us a mapping
of C onto itself. We claim

Lemma 1.7.1. If z, w € C, then:

(@) () =z

b)) (z +w)=2Z+ w.

(© (zw) =zw

(d) zzZ is real and nonnegative and is, in fact, positive if z # 0.
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(e) z + Zis twice the real part of z.
(f) z — Z is twice the imaginary part of z times .
Proof. Most of the parts of this lemma are straightforward and merely in-
volve using the definition of complex conjugate. We do verify Parts (c) and (d).

Suppose that z = a + bi, w = ¢ + di, where a, b, c, d are real. So zw =
(ac — bd) + (ad + bc)i, hence

(zw) = (ac — bd) + (ad + bc)i = (ac — bd) — (ad + bc)i.

On the other hand, 7 = a — biand w = ¢ — di, hence, by the definition of the
product in C, Zw = (ac — bd) — (ad + bc) i. Comparing this with the result
that we obtained for (zw), we see that indeed (zw) = 7 w. This verifies Part (c).

We go next to the proof of Part (d). Suppose that z = a + bi # 0; then
Z = a — biand zZ = a* + b2 Since a, b are real and not both 0, a®> + b? is
real and positive, as asserted in Part (d). []

The proof of Part (d) of Lemma 1.7.1 shows that if z = a + bi # 0, then
Z2=a*+ b*#0and z(Z/(a* + b*)) = 1,s0

Z _ a _ b )
a’> + b*  a* + b? 2+ b2 )

acts like the inverse 1/z of z. This allows us to carry out division in C, staying
in C while doing so.
We now list a few properties of C.

Lemma 1.7.2. C behaves under its sum and product according to the
following: If u, v, w € C, then

@) utv=v+u

b)) wW+v)y+w=u+(v+w).
(c) uv = vu.

(d) (uv)w = u(vw).

(e) u # 0implies that u~ !

1 = 1/u exists in C such that uu™! = 1.

Proof. We leave the proofs of these various parts to the reader. []

These properties of C make of C what we shall call a field, which we
shall study in much greater depth later in the book. What the lemma says is
that we are allowed to calculate in C more or less as we did with real num-
bers. However, C has a much richer structure than the set of real numbers.
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We now introduce a “size” function on C.

Definition. If z = a + bi € C, then the absolute value of z, written as

|z|, is defined by |z| = Vzz = Va* + b~

We shall see, in a few moments, what this last definition means geomet-
rically. In the meantime we prove

Lemma 1.7.3. If u,v € C, then |uv| = |u] |v].
Proof. By definition, |u| = Vuu and |v| = Vvo. Now

luv| = V(uv) (wv) = V(uv) @0)  (by Part (c) of Lemma 1.7.1)
= V(un)(vv) (by Lemma 1.7.2)

= Vuu Vo = |u| |v].(]
Another way of verifying this lemma is to write u = a + bi, v = ¢ + di,
uv = (ac — bd) + (ad + bc)i and to note the identity
(ac — bd)?* + (ad + bc)* = (a* + b?)(? + d?).

Note several small points about conjugates. If z € C, then z is real if
and only if Z = z, and z is purely imaginary if and only if 7 = —z. If
z, w € C, then

(zW + Zw) = ZW + ZW = Zw + ZW,

so zw + Zw is real. We want to get an upper bound for |zw + Zw|; this will
come up in the proof of Theorem 1.7.5 below.
But first we must digress for a moment to obtain a statement about

quadratic expressions.

Lemma 1.7.4. Let a, b, ¢ be real, with a > 0. If aa® + ba + ¢ = 0 for
every real a, then b* — 4ac < 0.

Proof. Consider the quadratic expression for « = —b/2a. We get
a(—b/2a)* + b(—b/2a) + ¢ = 0. Simplifying this, we obtain that (4dac — b?)/4a
= 0, and since a > 0, we end up with 4ac — b* = 0, and so b*> — 4ac = 0. [

We use this result immediately to prove the important

Theorem 1.7.5 (Triangle Inequality). Forz,w € C, |z + w|=|z| + |w|.

Proof. 1f z = 0, there is nothing to prove, so we may assume that z # 0;
thus zZ > 0. Now, for a real,
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0=<laz + w|* = (az + w) (az + w) = (az + w)(az + W)
= a’z7 + a(zw + Zw) + ww.
If a=22>0,b=2zw + Zw,c = ww, then Lemma 1.7.4 tells us that
b’ — 4ac = (zw + zZw)* — 4(z2)(ww) = 0, hence (zw + Zw)? =< 4(zZ)(Www) =
4|z|*|w|?. Therefore, zw + zw = 2|z]| |w|.
For a = 1 above,

z+wP=zZz+ww+zw+2Iw=|z|>+ |w*+ zw + Zw
=|z” + [w] + 2|z| [w|
from the result above. In other words, |z + w|* = (|z| + |w])?; taking square

roots we get the desired result, |z + w| = |z| + |w|. O

Why is this result called the triangle inequality? The reason will be clear
once we view the complex numbers geometrically. Represent the complex
number z = a + bi as the point having coordinates (a, b) in the x-y plane.

r (a,d)

The distance r of this point from the origin is Va*> + b2, in other words, |z|.
The angle 6 is called the argument of z and, as we see, tan 6 = b/a. Also,
a =rcos 0, b = rsin 6; therefore, z = a + bi = r(cos 6 + i sin ). This rep-
resentation of z is called its polar form.

Given z = a + bi, w = ¢ + di, then their sumisz + w = (a + ¢) +
(b + d)i. Geometrically, we have the picture:
(@+c,bt+d)
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The statement |z + w| < |z| + |w| merely reflects the fact that in a triangle
one side is of smaller length than the sum of the lengths of the other two
sides; thus the term triangle inequality.

The complex numbers that come up in the polar form cos 6 + i sin
are very interesting numbers indeed. Specifically,

lcos @ + isin 6] = Vcos? 6 + sin? 6 = V1 = 1,

so they give us many complex numbers of absolute value 1. In truth they give
us all the complex numbers of absolute value 1; to see this just go back and
look at the polar form of such a number.

Let’s recall two basic identities from trigonometry, cos(§ + ¢) =
cos 0 cos ¢ — sin 0 sin ¢ and sin(6 + ) = sin 6 cos ¢ + cos 6 sin . There-
fore, if z = r(cos 6 + isin ) and w = s(cos ¢ + i sin ¢), then

zw = r(cos 6 + isin ) - s(cos ¢ + isin )
= rs(cos 0 cos ¢y — sin @sin ) + i rs(sin 6 cos ¢ + cos 6sin )
= rs[cos(6 + ) + isin(6 + )]

Thus, in multiplying two complex numbers, the argument of the product is
the sum of the arguments of the factors.
This has another very interesting consequence.

Theorem 1.7.6 (De Moivre’s Theorem). For any integer n = 1,
[r(cos 6 + isin 6)]" = r"[cos(n6) + isin(n6)].

Proof. We proceed by induction on n. If n = 1, the statement is
obviously true. Assume then that for some k, [r(cos® + isin@)]* =
r*[cos k@ + i sin k6)]. Thus

[r(cos 6 + isin 6)]**! = [r(cos 8 + isin 6)]* - r(cos 6 + isin 6)
= r*(cos k0 + isin k@) - r(cos 6 + isin 6)
= r**1[cos(k + 1)6 + isin(k + 1)6]
by the result of the paragraph above. This completes the induction step;

hence the result is true for all integers n = 1. []

In the problems we shall see that De Moivre’s Theorem is true for all
integers m; in fact, it is true even if m is rational.
Consider the following special case:

2 .. 2T X X
0, = cos - + isin 0 where n = 1 is an integer.
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By De Moivre’s Theorem,
(cos (—-27T> + isin (——277))
n n
= cos( (—ZW» + isin (n (—-277)>
n n

=cos2m +isin2mwm = 1.

So 60; = 1; you can verify that 6} # 1 if 0 < m < n. This property of 6, makes
it one of the primitive nth roots of unity, which will be encountered in Prob-
lem 26.

PROBLEMS
Easier Problems

1. Multiply.
@) (6 — 7i)(8 + i).
(b) G+ 303 — 30
(c) (6 + 7i)(8 —i).
2. Express z7!in the form z7! = a + bi for:
@) z =6 + 8i.

(b) z=6-8i

(¢) z = —\/——5 + \—/—El.
*3, Show that (z)™! = (z71).
4. Find (cos 6 + isin 6)~..
5. Verify parts a, b, e, f of Lemma 1.7.1.
*6. Show that z is real if and only if 7 = z, and is purely imaginary if and
onlyifz = —z.
7. Verify the commutative law of multiplication zw = wz in C.
8. Show that for z # 0, |z7!| = V/]z].

9. Find:
(a) |6 — 4i|.
(b) |3+ 3.

1 1 .
(c) ‘\/i+\/§l|
10. Show that |Z| = |z].
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11.

12.

13.
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Find the polar form for

@:-2_L,

2 V2
(b) z = 4i

_6 _ 6.

(c)z—\/ +\/21.

_ 13, 39 .

d) z 2+2\/3z.

Prove that (cos(3 6) + i sin(36))? = cos 6 + i sin 6.

By direct multiplication show that (2 + 2V3i)® = — 1.

Middle-Level Problems

14.
15.

16.

17.

18.

19.

*20.
21.

22,

Show that (cos 0 + i sin §)" = cos(m6) + i sin(m@6) for all integers m.
Show that (cos 6§ + isin 6)" = cos(rf) + isin(r6) for all rational num-
bers r.

If z € Cand n = 1 is any positive integer, show that there are » distinct
complex numbers w such that z = w".

Find the necessary and sufficient condition on & such that:

(cos (M) + isin (Zw_k)) =1 and
n n
(cos <2nlk) + isin (znlk» #1 if0<m <n.

Viewing the x-y plane as the set of all complex numbers x + iy, show that
multiplication by i induces a 90° rotation of the x-y plane in a counter-
clockwise direction.

In Problem 18, interpret geometrically what multiplication by the com-
plex number a + bi does to the x-y plane.

Prove that |z + w|? + |z — w|?> = 2(|z|* + [w]?).

Consider the set A = {a + bi|a, b € Z}. Prove that there is a 1-1 corre-
spondence of A onto N. (A is called the set of Gaussian integers.)

If a is a (complex) root of the polynomial

x"+ ax" '+ -+, x + a,,

where the a; are real, show that a must also be a root. [r is a root of a
polynomial p(x) if p(r) = 0.]
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Harder Problems

23. Find the necessary and sufficient conditions on z and w in order that
|z + w| = lz] +|wl.
24. Find the necessary and sufficient conditions on z,, - - -, z, in order that
zo+ - ] =zl o+
*25. The complex number 6 is said to have order n = 1if 6" = 1 and ™ # 1
for 0 < m < n. Show that if 6 has order n and 6* = 1, where k > 0, then
nlk.
*26. Find all complex numbers 6 having order »n. (These are the primitive nth
roots of unity.)
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GROUPS

1. DEFINITIONS AND EXAMPLES OF GROUPS

We have seen in Section 4 of Chapter 1 that given any nonempty set, the set
A(S) of all 1-1 mappings of S onto itself is not just a set alone, but has a far
richer texture. The possibility of combining two elements of A(S) to get
yet another element of A(S) endows A(S) with an algebraic structure. We
recall how this was done: If f, g € A(S), then we combine them to form the
mapping fg defined by (fg)(s) = f(g(s)) for every s € S. We called fg the
product of f and g, and verified that fg € A(S), and that this product obeyed
certain rules. From the myriad of possibilities we somehow selected four par-
ticular rules that govern the behavior of A (S) relative to this product.
These four rules were

1. Closure, namely if f, g € A(S), then fg € A(S). We say that A(S) is
closed under this product.

2. Associativity, that is, given f, g, h € A(S), then f(gh) = (fg)h.

3. Existence of a unit element, namely, there exists a particular element
i € A(S) (the identity mapping) such that fi = if = ffor all f€ A(S).

4. Existence of inverses, that is, given f € A(S) there exists an element,
denoted by f~!, in A(S) such that ff~! = f~lf =

To justify or motivate why these four specific attributes of A(S) were
singled out, in contradistinction to some other set of properties, is not easy to

40
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do. In fact, in the history of the subject it took quite some time to recognize
that these four properties played the key role. We have the advantage of his-
torical hindsight, and with this hindsight we choose them not only to study
A(S), but also as the chief guidelines for abstracting to a much wider context.

Although we saw that the four properties above enabled us to calculate
concretely in A (S), there were some differences with the kind of calculations
we are used to. If S has three or more elements, we saw in Problem 15,
Chapter 1, Section 4 that it is possible for f, g € A(S) to have fg # gf. How-
ever, this did not present us with insurmountable difficulties.

Without any further polemics we go to the

Definition. A nonempty set G is said to be a group if in G there is de-
fined an operation * such that:

(a) a, b € G implies that a * b € G. (We describe this by saying that G is
closed under *.)

(b) Given a, b, c € G, then a * (b * ¢) = (a * b) * c. (This is described by
saying that the associative law holds in G.)

(c) There exists a special element e € G such thata * e = e * a = a for all
a € G (e is called the identity or unit element of G).

(d) For every a € G there exists an element b € G such that a * b =
b * a = e. (We write this element b as a™' and call it the inverse of
ain G.)

These four defining postulates (called the group axioms) for a group
were, after all, patterned after those that hold in A(S). So it is not surprising
that A(S) is a group relative to the operation “composition of mappings.”

The operation * in G is usually called the product, but keep in mind
that this has nothing to do with product as we know it for the integers, ratio-
nals, reals, or complexes. In fact, as we shall see below, in many familiar ex-
amples of groups that come from numbers, what we call the product in these
groups is actually the addition of numbers. However, a general group need
have no relation whatsoever to a set of numbers. We reiterate: A group is no
more, no less, than a nonempty set with an operation * satisfying the four
group axioms.

Before starting to look into the nature of groups, we look at some ex-
amples.

Examples of Groups

1. Let Z be the set of all integers and let * be the ordinary addition, +, in Z.
That Z is closed and associative under * are basic properties of the integers.
What serves as the unit element, e, of Z under *? Clearly, since a = a * e =
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a + e, we have e = 0, and 0 is the required identity element under addition.
What about a~!? Here too, sincee =0 =a*a ! = a + a” !, the a ! in this in-
stance is —a, and clearly a * (—a) = a + (—a) = 0.

2. Let Q be the set of all rational numbers and let the operation * on Q be
the ordinary addition of rational numbers. As above, Q is easily shown to be
a group under *. Note that Z C Q and both Z and Q are groups under the
same operation *.

3. Let Q' be the set of all nonzero rational numbers and let the opera-
tion * on Q' be the ordinary multiplication of rational numbers. By the fa-
miliar properties of the rational numbers we see that Q' forms a group rela-
tive to *.

4. Let R* be the set of all positive real numbers and let the operation * on R*
be the ordinary product of real numbers. Again it is easy to check that R™ is
a group under *.

5.Let E,bethesetof 0,,i=0,1,2,...,n— 1, where 6, is the complex num-
ber 0, = cos(2m/n) + i sin(2m/n). Let 6% * 6, = 0%*/ the ordinary product of
the powers of 6, as complex numbers. By De Moivre’s Theorem we saw that
6 = 1. We leave it to the reader to verify that E, is a group under *. The ele-
ments of E, are called the n'th roots of unity. The picture below illustrates the
group E,, whose elements are represented by the dots on the unit circle in the
complex plane.

A

Note one striking difference between the Examples 1 to 4 and Example
5; the first four have an infinite number of elements, whereas E, has a finite
number, n, of elements.

Definition. A group G is said to be a finite group if it has a finite
number of elements. The number of elements in G is called the order of G and
is denoted by |G|.
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Thus E, above is a finite group, and | E,,| = n.

All the examples presented above satisfy the additional property that
a * b = b * a for any pair of elements. This need not be true in a group. Just
witness the case of A (S), where S has three or more elements; there we saw
that we could find f, g € A(S) such that fg # gf.

This prompts us to single out as special those groups of G in which
a*b=>bxaforalla, b € G.

Definition. A group G is said to be abelian if a * b = b * a for all
a, b eG.

The word abelian derives from the name of the great Norwegian mathematician
Niels Henrik Abel (1802-1829), one of the greatest scientists Norway has ever
produced.

A group that is not abelian is called nonabelian, a not too surprising
choice of name.

We now give examples of some nonabelian groups. Of course, the
A(S) afford us an infinite family of such. But we present a few other exam-
ples in which we can compute quite readily.

6. Let R be the set of all real numbers, and let G be the set of all mappings
T,,: R — R defined by T, ,(r) = ar + b for any real number r, where a, b
are real numbers and a # 0. Thus, for instance, Ts _¢ is such that 75 _¢(r) =
5r—6;Ts_¢(14)=5-14 -6 =64, Ts _¢(m) = S — 6. The T, , are 1-1 map-
pings of R onto itself, and we let T, , * T, ; be the product of two of these

mappings. So

(Top* T, y)r) = T,,(T.4(r)) = aT . 4,(r) + b =a(cr +d) + b
= (ac)r + (ad + b) = T, 0a+5(7)-

So we have the formula

Ta,b * Tc,d = Tac, ad+b - (1)

This result shows us that 7, , * T, , is in G—for it satisfies the membership
requirement for belonging to G—so G is closed under *. Since we are talking
about the product of mappings (i.e., the composition of mappings), * is
associative. The element 7, , = i is the identity mapping of R onto itself.
Finally, what is 7,',? Can we find real numbers x # 0 and y, such that
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Ta,b* Tx,y = Tx,y * Ta,b = Tl,O?

Go back to (1) above; we thus want T, ,,,, = Ty, thatis,ax = 1,ay + b= 0.
Remember now that a # 0, so if we put x = a~! and y = —a~'b, the required
relations are satisfied. One verifies immediately that

T

a,b % Ta—l, ip = Tafl,—a"lb % Ta,b = Tl,O'

—a~

So G is indeed a group.

What is 7, , * T, ,? According to the formula given in (1), where we re-
place aby c, c by a, b by d, d by b, we get

Tc,d * Ta,b = Tca,cb+d' (2)

Thus T, ;% T,, =1fT,,* T, ;and only if bc + d = ad + b. This fails to be
true, for instance,ifa =1,b =1, c = 2,d = 3. So G is nonabelian.

7. Let H C G, where G is the group in Example 6, and H is defined by
H ={T,, € G|ais rational, b any real}. We leave it to the reader to verify
that H is a group under the operation * defined on G. H is nonabelian.

8. Let K C H C G, where H, G are as above and K = {T, , € G| b any real)}.
The reader should check that K is a group relative to the operation * of G,
and that K is, however, abelian.

9. Let S be the plane, that is, S = {(x, y) | x, y real} and consider f, g € A(S)
defined by f(x, y) = (—x, y) and g(x, y) = (—y, x); f is the reflection about
the y-axis and g is the rotation through 90° in a counterclockwise direction
about the origin. We then define G = {fig/|i =0,1;j =0, 1, 2, 3}, and let *
in G be the product of elements in A(S). Clearly, f* = g* = identity mapping;

(f*g)x,y) = (fg)x,y) = f(glx,y)) = f(—y,x) = (y,%)
and

(g*f)(x,y) = g(f(x,y)) = g(=x,y) = (-y, —x).

So g * f #+ f* g. We leave it to the reader to verify that g * f = f* g and G
is a nonabelian group of order 8. This group is called the dihedral group of
order 8. [Try to find a formula for ( fig’) * (fg') = f°g® that expresses a, b
in terms of i, j, s, and ¢.]

10. Let S be as in Example 9 and f the mapping in Example 9. Let n > 2 and
let h be the rotation of the plane about the origin through an angle of 27/n
in the counterclockwise direction. We then define G = {f*h/|k = 0, 1;
j=0,1,2,...,n — 1} and define the product * in G via the usual product of
mappings. One can verify that f2 = h" = identity mapping, and fh = h”'f.
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These relations allow us to show (with some effort) that G is a nonabelian
group of order 2n. G is called the dihedral group of order 2n.

11.Let G = {f€ A(S) | f(s) # s for only a finite number of s € S}, where we
suppose that § is an infinite set. We claim that G is a group under the product
* in A(S). The associativity holds automatically in G, since it already holds in
A(S). Also, i € G, since i(s) = s for all s € S. So we must show that G is
closed under the product and if f € G, then f~! € G.

We first dispose of the closure. Suppose that f, g € G; then f(s) = s
except, say, for s, s,,...,s, and g (s) = s except for s;,s5,...,s, . Then
(fe)(s) = f(g(s)) = s for all s other than s{, s,,..., §,, 5{,...,5,, (and
possibly even for some of these). So fg moves only a finite number of ele-
ments of S, so fg € G.

Finally, if f(s) = s for all s other than s, 5,,..., s,, then f~}(f(s)) =
1), but £71(s) = fF1(f(s)) = (ff)(s) = i(s) = 5. So we obtain that
f~1(s) = s for all s except s, . .., s,. Thus f~! € G and G satisfies all the group
axioms, hence G is a group.

12. Let G be the set of all mappings 74, where T is the rotation of a given cir-
cle about its center through an angle 6 in the clockwise direction. In G define
* by the composition of mappings. Since, as is readily verified, Ty * T, = Ty, ,,
G is closed under *. The other group axioms check out easily. Note that
T,, = T, = the identity mapping, and T,' = T_,= T,,_4. G is an abelian group.

As we did for A (S) we introduce the shorthand notation a” for

a*a*a---*a
n times

and define a~" = (a”')", for n a positive integer, and a° = e. The usual rules
of exponents then hold, that is, (¢”)" = @™ and @™ * a" = a™"" for any inte-
gers m and n.

Note that with this notation, if G is the group of integers under +, then
a" is really na.

Having seen the 12 examples of groups above, the reader might get the
impression that all, or almost all, sets with some operation * form groups.
This is far from true. We now give some examples of nongroups. In each case
we check the four group axioms and see which of these fail to hold.

Nonexamples

1. Let G be the set of all integers, and let * be the ordinary product of inte-
gers in G. Since a * b = ab, for a, b € G we clearly have that G is closed and
associative relative to *. Furthermore, the number 1 serves as the unit ele-
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ment, since a * 1 = al = a = la = 1 * a for every a € G. So we are three-
fourths of the way to proving that G is a group. All we need is inverses for
the elements of G, relative to *, to lie in G. But this just isn’t so. Clearly, we
cannot find an integer b such that 0 * b = 0b = 1, since 0b = 0 for all b. But
even other integers fail to have inverses in G. For instance, we cannot find an
integer b such that 3 * b = 1 (for this would require that b = 3, and 3 is not
an integer).

2. Let G be the set of all nonzero real numbers and define, fora, b € G,a * b
= a’b; thus 4 * 5 = 4*(5) = 80. Which of the group axioms hold in G under
this operation * and which fail to hold? Certainly, G is closed under *. Is *
associative? If so, (a * b) * ¢ = a * (b * c), that is, (a * b)’c = a*(b * ¢), and
so (a’b)’c = a*(b*c), which boils down to a* = 1, which holds only for
a = *1. So, in general, the associative law does not hold in G relative to *.
We similarly can verify that G does not have a unit element. Thus even to
discuss inverses relative to * would not make sense.

3. Let G be the set of all positive integers, under * where a * b = ab, the
ordinary product of integers. Then one can easily verify that G fails to be a
group only because it fails to have inverses for some (in fact, most) of its ele-
ments relative to *.

We shall find some other nonexamples of groups in the exercises.

PROBLEMS
Easier Problems

1. Determine if the following sets G with the operation indicated form a

group. If not, point out which of the group axioms fail.

(a) G = set of all integers,a*b =a — b.

(b) G = set of all integers,a*b =a + b + ab.

(¢) G = set of nonnegative integers,a *b = a + b.

(d) G = set of all rational numbers # —1,a*b =a + b + ab.

(e) G = set of all rational numbers with denominator divisible by 5 (writ-
ten so that numerator and denominator are relatively prime), a * b =
a+ b.

(f) G aset having more than one element,a * b = aforalla, b € G.

2. In the group G defined in Example 6, show that the set H = {T,, | a = *1,
b any real} forms a group under the * of G.

3. Verify that Example 7 is indeed an example of a group.
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10.

11.

12.
13.
14.

15.
16.

17.
*18.

19.

20.

Prove that K defined in Example 8 is an abelian group.

In Example 9, prove that g * f = f* g~!, and that G is a group, is non-
abelian, and is of order 8.

Let G and H be as in Examples 6 and 7, respectively. Show that if
T.,€G,thenT,,*V=+T,, € Hif VE H.

Do Problem 6 with H replaced by the group K of Example 8.

If G is an abelian group, prove that (a * b)" = a" = b" for all integers n.
If G is a group in which a*> = e for all a € G, show that G is abelian.

If G is the group in Example 6, find all T, , € Gsuch that 7, , * T , =
T, *T,,forall real x.

In Example 10, for n = 3 find a formula that expresses ( f'h/) * ( fh') as
f°h®. Show that G is a nonabelian group of order 6.

Do Problem 11 for n = 4.

Show that any group of order 4 or less is abelian.

If G is any group and a, b, c € G, show thatifa *b = a * c, then b = c,
andif b*a =c*a,thenb = c.

Express (a * b)"!in terms of a~! and b™".

Using the result of Problem 15, prove that a group G in which a = a!

for every a € G must be abelian.
In any group G, prove that (a™!)"! = aforalla € G.

If G is a finite group of even order, show that there must be an element
a # e such that a = a~!. (Hint: Try to use the result of Problem 17.)

In S;, show that there are four elements x satisfying x*> = e and three ele-
ments y satisfying y> = e.
Find all the elements in S, such that x* = e.

Middle-Level Problems

21.
22.

23.

24.

Show that a group of order 5 must be abelian.

Show that the set defined in Example 10 is a group, is nonabelian, and
has order 2n. Do this by finding the formula for ( f'h’) * (f*h') in the
form feh’.

In the group G of Example 6, find all elements U € G such that
UxT,,=T,,*Uforevery T, , € G.

If G is the dihedral group of order 2n as defined in Example 10, prove that:
(@) Ifnisoddanda € Gissuchthata*xb =bx*aforallb € G,thena =e.
(b) If nis even, show that thereisana € G,a # e,suchthata*b = b *a

forall b € G.
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(¢) If n is even, find all the elements a € G such thata * b = b * q
for all b € G.
25. If G is any group, show that:
(a) eis unique (i.e., if f € G also acts as a unit element for G, then f = e).
(b) Given a € G, thena™! € G is unique.

*26. If G is a finite group, prove that, given a € G, there is a positive integer
n, depending on a, such that a” = e.

*27. In Problem 26, show that there is an integer m > 0 such that a” = e
foralla € G.

Harder Problems

28. Let G be a set with an operation * such that:
1. G is closed under *.
2. * 1s associative.
3. There exists an element e € G such that e * x = x for all x € G.
4. Given x € G, there exists ay € G such that y * x = e.
Prove that G is a group. (Thus you must show that x *xe = xandx *y = e
for e, y as above.)

29. Let G be a finite nonempty set with an operation * such that:
1. G is closed under *.
2. * 1s associative.
3. Givena,b,c€ Gwitha*b =ax*c,thenb = c.
4. Givena, b,c, € Gwithb *a =c *a,thenb = c.
Prove that G must be a group under *.
30. Give an example to show that the result of Problem 29 can be false if G
is an infinite set.

31. Let G be the group of all nonzero real numbers under the operation *
which is the ordinary multiplication of real numbers, and let H be the
group of all real numbers under the operation #, which is the addition of
real numbers.

(a) Show that there is a mapping F: G — H of G onto H which satisfies
F(a*b) = F(a)#F(b) for alla, b € G [i.e., F(ab) = F(a) + F(b)].
(b) Show that no such mapping F can be 1-1.

2. SOME SIMPLE REMARKS

In this short section we show that certain formal properties which follow from
the group axioms hold in any group. As a matter of fact, most of these results
have already occurred as problems at the end of the preceding section.
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It is a little clumsy to keep writing the * for the product in G, and from
now on we shall write the product a * b simply as ab for all a, b € G.
The first such formal results we prove are contained in

Lemma 2.2.1. If G is a group, then:

(a) Its identity element is unique.

(b) Every a € G has a unique inverse a”' € G.
(c) fa€eG,(a) '=a

(d) Fora,b € G, (ab) ' =b""a L.

Proof. We start with Part (a). What is expected of us to carry out the
proof? We must show that if e, f € G and af = fa = a for all a € G and
ae = ea = a for all a € G, then e = f. This is very easy, for then e = ef and
f = ef; hence e = ef = f, as required.

Instead of proving Part (b), we shall prove a stronger result (listed
below as Lemma 2.2.2), which will have Part (b) as an immediate conse-
quence. We claim that in a group G if ab = ac, then b = c; that is, we can
cancel a given element from the same side of an equation. To see this, we
have, for a € G, an element u € G such that ua = e. Thus from ab = ac we
have

u(ab) = u(ac),

so, by the associative law, (ua)b = (ua)c, that is, eb = ec. Hence b = eb =
ec = ¢, and our result is established. A similar argument shows that if
ba = ca, then b = c. However, we cannot conclude from ab = ca that b = c;
in any abelian group, yes, but in general, no.

Now to get Part (b) as an implication of the cancellation result. Suppose
that b, ¢ € G act as inverses for a; then ab = e = ac, so by cancellation b = ¢
and we see that the inverse of a is unique. We shall always write it as a~ ..

To see Part (c), note that by definitiona™'(a ') ! = e;buta la = ¢, so
by cancellationina™'(a”!)™! = e = a”'a we get that (a )" ! = a.

Finally, for Part (d) we calculate

(ab)(b~'a™") = ((ab)b™Na™! (associative law)

= (a(bb™")a™! (again the associative law)

1 1

= (ae)a™' = aa” = e.

Similarly, (b~ !a”')(ab) = e. Hence, by definition, (ab)™! = b a1 [J
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We promised to list a piece of the argument given above as a separate
lemma. We keep this promise and write

Lemma 2.2.2. In any group G and a, b, c € G, we have:

(a) If ab = ac, then b = c.
(b) If ba = ca, then b =c.

Before leaving these results, note that if G is the group of real
numbers under +, then Part (c) of Lemma 2.2.1 translates into the familiar
—(—a) = a.

There is only a scant bit of mathematics in this section; accordingly,
we give only a few problems. No indication is given as to the difficulty of these.

PROBLEMS

1. Suppose that G is a set closed under an associative operation such that
1. givena, y € G, there is an x € G such that ax = y, and
2. givena,w € G, there is a u € G such that ua = w.
Show that G is a group.

*2. If G is a finite set closed under an associative operation such that ax = ay
forces x = y and ua = wa forces u = w, for every a, x, y, u, w € G, prove
that G is a group. (This is a repeat of a problem given earlier. It will be
used in the body of the text later.)

3. If G is a group in which (ab)’ = a'b’ for three consecutive integers i, prove
that G is abelian.

4. Show that the result of Problem 3 would not always be true if the word
“three” were replaced by “two.” In other words, show that there is a
group G and consecutive numbers i, i + 1 such that G is not abelian but
does have the property that (ab)’ = a’'b’ and (ab)'*' = a'*'b'*! for all
a,binG.

5. Let G be a group in which (ab)?® = a>b® and (ab)’ = a°b°for alla, b € G.
Show that G is abelian.

6. Let G be a group in which (ab)” = a"b" for some fixed integer n > 1 for
alla, b € G.Foralla, b € G, prove that:

(a) (ab)n—l — b"—la"'l.

(b) anbn—l — bn—lan-

(¢) (aba b~ 1)y(r"D = ¢,

[Hint for Part (c): Note that (aba™!)" = ab’a™! for all integers r.]
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3. SUBGROUPS

In order for us to find out more about the makeup of a given group G, it may
be too much of a task to tackle all of G head-on. It might be desirable to
focus our attention on appropriate pieces of G, which are smaller, over which
we have some control, and are such that the information gathered about
them can be used to get relevant information and insight about G itself. The
question then becomes: What should serve as suitable pieces for this kind of
dissection of G? Clearly, whatever we choose as such pieces, we want them
to reflect the fact that GG is a group, not merely any old set.

A group is distinguished from an ordinary set by the fact that it is en-
dowed with a well-behaved operation. It is thus natural to demand that such
pieces above behave reasonably with respect to the operation of G. Once
this is granted, we are led almost immediately to the concept of a subgroup
of a group.

Definition. A nonempty subset, H, of a group G is called a subgroup
of G if, relative to the product in G, H itself forms a group.

We stress the phrase “relative to the product in G.” Take, for instance,
the subset A = {1, —1} in Z, the set of integers. Under the multiplication of
integers, A is a group. But A is not a subgroup of Z viewed as a group with
respect to +.

Every group G automatically has two obvious subgroups, namely G it-
self and the subgroup consisting of the identity element, e, alone. These two
subgroups we call trivial subgroups. Our interest will be in the remaining
ones, the proper subgroups of G.

Before proceeding to a closer look at the general character of sub-
groups, we want to look at some specific subgroups of some particular, ex-
plicit groups. Some of the groups we consider are those we introduced as ex-
amplei in Section 1; we maintain the numbering given there for them. In
some of these examples we shall verify that certain specified subsets are indeed
subgroups. We would strongly recommend that the reader carry out such a
verification in lots of the others and try to find other examples for themselves.

In trying to verify whether or not a given subset of a group is a sub-
group, we are spared checking one of the axioms defining a group, namely
the associative law. Since the associative law holds universally in a group G,
given any subset A of G and any three elements of A, then the associative
law certainly holds for them. So we must check, for a given subset A of G,
whether A is closed under the operation of G, whether e is in A, and finally,
given a € A, whether a~ ! is also in A.
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Note that we can save one more calculation. Suppose that A C G is
nonempty and that given a, b € A, then ab € A. Suppose further that given
a € A, thena ! € A. Then we assert that e € A. For picka € A;thena™' € A
by supposition, hence aa~! € A, again by supposition. Since aa™' = e, we
have that e € A. Thus a is a subgroup of G. In other words,

Lemma 2.3.1. A nonempty subset A C G is a subgroup of G if and
only if A is closed with respect to the operation of G and, given a € A, then
al€EA.

We now consider some examples.

Examples

1. Let G be the group Z of integers under + and let H be the set of even in-
tegers. We claim that H is a subgroup of Z. Why? Is H closed, that is, given
a,b € H,isa + b € H? In other words, if a, b are even integers, isa + b an
even integer? The answer is yes, so H is certainly closed under +. Now to the
inverse. Since the operation in Z is +, the inverse of a € Z relative to this op-
eration 1s —a. If a € H, that is, if a i1s even, then —a 1s also even, hence
—a € H. In short, H is a subgroup of Z under +.

2. Let G once again be the group Z of integers under +. In Example 1, H,
the set of even integers, can be described in another way: namely H consists
of all multiples of 2. There is nothing particular in Example 1 that makes use
of 2 itself. Let m > 1 be any integer and let H,, consist of all multiples of m
in Z. We leave it to the reader to verify that H,, is a subgroup of Z under +.

3. Let S be any nonempty set and let G = A(S). If a € S, let H(a) =
{f € A(S)|f(a) = a). We claim that H(a) is a subgroup of G. For if
f. ¢ € H(a), then (fg)(a) = f(g(a)) = f(a) = a, since f(a) = g(a) = a. Thus
fg € H(a). Also, if f € H(a), then f(a) = a, so that f~'(f(a)) = f'(a). But
f Y (f(a)) = f Ya) = i(a) = a. Thus, since a = f~'(f(a)) = f~'(a), we have
that f~! € H(a). Moreover, H is nonempty. (Why?) Consequently, H(a) is a
subgroup of G.

4. Let G be as in Example 6 of Section 1, and H as in Example 7. Then H is a
subgroup of G (see Problem 3 in Section 1).

5. Let G be as in Example 6, H as in Example 7, and K as in Example 8 in
Section 1. Then K C H C G and K is a subgroup of both H and of G.

6. Let C’ be the nonzero complex numbers as a group under the multiplica-
tion of complex numbers. Let V = {a € C’ | |a| is rational}. Then V is a sub-
group of C'. For if |a| and |b| are rational, then |ab| = |a| |b] is rational, so
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ab € V; also, |a~! | = 1/]a]| is rational, hence a~! € V. Therefore, V is a sub-
group of C'.

7. Let C’' and V be as above and let
U={a€C’|a= cos 6 + isin 6, 6 any real}.

Ifa=cos 6+ isinfand b = cos ¢ + i sin ¢, we saw in Chapter 1 that ab =
cos (0 + ) + isin(6 + ¢), so that ab € U, and that a™' = cos § — i sin § =
cos(—6) + i sin(—6) € U. Also, |a| = 1, since |a| = Vcos?6 + sin®6 = 1.
Therefore, U C V C C' and U is a subgroup both of V and of C’.

8 Let C', U, V be as above, and let n > 1 be an integer. Let 6, =
cos(2m/n) + i sin(2w/n), and let B = {1, 0,, 62, ..., 627 '}. Since 67 = 1 (as
we saw by De Moivre’s Theorem), it is easily checked that B is a subgroup of
U, V,and C’, and is of order n.

9. Let G be any group and let a € G. The set A = {a'| i any integer} is a sub-
group of G. For, by the rules of exponents, if a' € A and a’ € A, then a'a’ =
a'*J sois in A. Also, (a’)"! = a ', so (a')”! € A. This makes A into a sub-
group of G.

A is the cyclic subgroup of G generated by a in the following sense.

Definition. The cyclic subgroup of G generated by a is a set {a’ | i any
integer }. It is denoted (a).

Note that if e is the identity element of G, then (e) = {e}. In Example 8,
the group B is the cyclic group (6,,) of C generated by 6,,.

10. Let G be any group; for a € G let C(a) = {g € G | ga = ag}. We claim
that C(a) is a subgroup of G. First, the closure of C(a). If g, h € C(a), then
ga = ag and ha = ah, thus (gh)a = g(ha) = g(ah) = (ga)h = (ag)h =
a(gh) (by the repeated use of the associative law), hence gh € C(a). Also, if
g € (C(a), then from ga = ag we have g”'(ga)g™! = g '(ag)g™', which
simplifies to ag™! = g~ la; whence g7! € C(a). So, C(a) is thereby a sub-
group of G.

These particular subgroups C(a) will come up later for us and they are
given a special name. We call C(a) the centralizer of a in G. If in a group
ab = ba, we say that a and b commute. Thus C(a) is the set of all elements in
G that commute with a.

11. Let G be any group and let Z(G) = {z € G| zx = xz for all x € G}. We
leave it to the reader to verify that Z(G) is a subgroup of G. It is called the
center of G.
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12. Let G be any group and H a subgroup of G. For a € G, let a”'Ha =
{a 'ha|h € H). We assert that a”'Ha is a subgroup of G. If x = a~'h,a and
y = a”'h,a where h,, h, € H, then xy = (a 'h,a)(a h,a) = a ' (h h,)a
(associative law), and since H is a subgroup of G, h;h, € H. Therefore,
a~'(hih,)a € a~'Ha, which says that xy € a 'Ha. Thus a 'Ha is closed.
Also, if x = a”'ha € a™'Ha, then, as is easily verified, x ™' = (a ha)™! =
a 'h™'a € a~'Ha. Therefore, a ! Ha is a subgroup of G.

An even dozen seems to be about the right number of examples, so we
go on to other things. Lemma 2.3.1 points out for us what we need in order
that a given subset of a group be a subgroup. In an important special case we
can make a considerable saving in checking whether a given subset H is a
subgroup of G. This is the case in which H is finite.

Lemma 2.3.2. Suppose that G is a group and H a nonempty finite sub-
set of G closed under the product in G. Then H is a subgroup of G.

Proof. By Lemma 2.3.1 we must show that a € H impliesa™ ' € H. If
a = e,thena” ! = e and we are done. Suppose then that a # e ; consider
the elements a, a%, ..., a""!, where n = |H|, the order of H. Here we
have written down n + 1 elements, all of them in H since H is closed, and H
has only n distinct elements. How can this be? Only if some two of the ele-
ments listed are equal; put another way, only if @' = a’ for some 1 =i <

j = n + 1. But then, by the cancellation property in groups, a’~ ' = e. Since
j—i=1,a’""€ H,hence e € H. However,j — i —1=0,s0a’ """ '€ H
and aa’~"! = a/~' = ¢, whence a”! = a/~ ! € H. This proves the
lemma. [

An immediate, but nevertheless important, corollary to Lemma 2.3.2 is the

Corollary. If G is a finite group and H a nonempty subset of G closed
under multiplication, then H is a subgroup of G.

PROBLEMS

Easier Problems

1. If A, B are subgroups of G, show that A N B is a subgroup of G.

2. What is the cyclic subgroup of Z generated by —1 under +?

3. Let S; be the symmetric group of degree 3. Find all the subgroups of ;.
4. Verify that Z(G), the center of G, is a subgroup of G. (See Example 11.)
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5.

>

10.

*11.

*12.
13.
14.
15.

If C(a) is the centralizer of a in G (Example 10), prove that Z(G) =
NaecC(a).

Show that a € Z(G) if and only if C(a) = G.

In S5, find C(a) for each a € S;.

If G is an abelian group and if H = {a € G |a*® = e}, show that H is a
subgroup of G.

Give an example of a nonabelian group for which the H in Problem 8 is
not a subgroup.

If G is an abelian group and » > 1 an integer, let A, = {a"|a € G).
Prove that A, is a subgroup of G.

If G is an abelian group and H = {a € G | a™® = e for some n(a) > 1 de-
pending on a}, prove that H is a subgroup of G.

We say that a group G is cyclic if there exists an a € G such that
every x € G is a power of a, that is, x = a’ for some j. In other words, G
is cyclic if G = (a) for some a € G, in which case we say that a is a gen-
erator for G.

Prove that a cyclic group is abelian.
If G is cyclic, show that every subgroup of G is cyclic.
If G has no proper subgroups, prove that G is cyclic.

If G is a group and H a nonempty subset of G such that, givena, b € H,
then ab~! € H, prove that H is a subgroup of G.

Middle-Level Problems

*16

17.

18.

19.

20.

21.

* 22,

If G has no proper subgroups, prove that G is cyclic of order p, where p
is a prime number. (This sharpens the result of Problem 14.)

If G is a group and a, x € G, prove that C(x 'ax) = x~!C(a)x. [See Ex-
amples 10 and 12 for the definitions of C (b) and of x ~'C (a)x.]

If S is a nonempty set and X C S, show that T(X) = {f€ A(S) | f(X) C
X } is a subgroup of A(S) if X is finite.

If A, B are subgroups of an abelian group G.let AB = {ab|a € A, b € B}.
Prove that AB is a subgroup of G.

Give an example of a group G and two subgroups A, B of G such that
AB is not a subgroup of G.

If A, B are subgroups of G such that b"'Ab C A for all b € B, show that
AB is a subgroup of G.

If A and B are finite subgroups, of orders m and n, respectively, of the
abelian group G, prove that AB is a subgroup of order mn if m and n are
relatively prime.
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23. What is the order of AB in Problem 22 if m and n are not relatively prime?

24, If H is a subgroup of G, let N = N,c;x " 'Hx. Prove that N is a subgroup
of G such that y~!Ny = N for every y € G.

Harder Problems

25. Let S, X, T(X) be as in Problem 18 (but X no longer finite). Give an ex-
ample of a set S and an infinite subset X such that 7(X) is not a sub-
group of A(S).

*26. Let G be a group, H a subgroup of G. Let Hx = {hx | h € H}. Show that,
given a, b € G, then Ha = Hb or Ha N Hb = Q.

*27. 1f in Problem 26 H is a finite subgroup of G, prove that Ha and Hb have
the same number of elements. What is this number?

28. Let M, N be subgroups of G such that x 'Mx C M and x~'Nx C N for
all x € G. Prove that MN is a subgroup of G and that x“'(MN)x C MN
forallx € G.

*29. If M is a subgroup of G such that x !Mx C M for all x € G, prove that
actually x " 'Mx = M.
30. If M, N are such that x !Mx = M and x " 'Nx = N for all x € G, and if
M N N = (e), prove that mn = nm for any m € M, n € N. (Hint: Con-
sider the element m~'n"'mn.)

4. LAGRANGE’S THEOREM

We are about to derive the first real group-theoretic result of importance.
Although its proof is relatively easy, this theorem is like the A-B-C’s for fi-
nite groups and has interesting implications in number theory.

As a matter of fact, those of you who solved Problems 26 and 27 of Sec-
tion 3 have all the necessary ingredients to effect a proof of the result. The
theorem simply states that in a finite group the order of a subgroup divides
the order of the group.

To smooth the argument of this theorem—which is due to Lagrange—
and for use many times later, we make a short detour into the realm of set
theory.

Just as the concept of “function” runs throughout most phases of math-
ematics, so also does the concept of “relation.” A relation is a statement aRb
about the elements a, b € S. If S is the set of integers, a = b is a relation
on §. Similarly, a < b is arelation on S, asis a < b.
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Definition. A relation ~ on a set S is called an equivalence relation if,
for all a, b, c € §, it satisfies:

(a) a ~ a (reflexivity).
(b) a ~ b implies that b ~ a (symmetry).
(c) a ~ b, b ~ cimplies that a ~ c¢ (transitivity).

Of course, equality, =, is an equivalence relation, so the general notion
of equivalence relation is a generalization of that of equality. In a sense, an
equivalence relation measures equality with regard to some attribute. This
vague remark may become clearer after we see some examples.

Examples

1. Let S be all the items for sale in a grocery store; we declare a ~ b, for
a, b € §, if the price of a equals that of b. Clearly, the defining rules of an
equivalence relation hold for this ~. Note that in measuring this “generalized
equality” on S we ignore all properties of the elements of S other than their
price. So a ~ b if they are equal as far as the attribute of price is concerned.

2. Let S be the integers and n > 1 a fixed integer. We define a ~ b for a,
b € Sif n|(a — b). We verify that this is an equivalence relation. Since n |0
and 0 = a — a, we have a ~ a. Because n | (@ — b) implies that n | (b — a), we
have that a ~ b implies that b ~ a. Finally, if a ~ b and b ~ ¢, then
n|(a—>b)andn|(b — c);hence n|((a — b) + (b — ¢)), thatis, n | (a — ¢).
Therefore, a ~ c.

This relation on the integers is of great importance in number theory
and is called congruence modulo n; when a ~ b, we write this asa = b mod n
[or, sometimes, as a = b(n)], which is read “a congruent to b mod n.” We’ll
be running into it very often from now on. As we shall see, this is a special
case of a much wider phenomenon in groups.

3. We generalize Example 2. Let G be a group and H a subgroup of G. For
a,b € G,definea ~bifab ! € H. Since e € H and e = aa” !, we have that
a ~ a. Also, if ab~! € H, then since H is a subgroup of G, (ab~")"! € H. But
(ab™H 1= (B"NH"'a7! = ba"!,s0 ba~! € H, hence b ~ a. This tells us that
a ~ b implies that b ~ a. Finally, if a ~ b and b ~ c, then ab™! € H and
bc' € H. But (ab ')(bc™') = ac™!, whence ac’! € H and therefore
a ~ c¢. We have shown the transitivity of ~, thus ~ is an equivalence relation
on G.

Note that if G = Z, the group of integers under +, and H is the sub-
group consisting of all multiples of n, for n > 1 a fixed integer, thenab™! € H
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translates into a = b(n). So congruence mod n is a very special case of the
equivalence we have defined in Example 3.

It is this equivalence relation that we shall use in proving Lagrange’s
theorem.

4. Let G be any group. For a, b € G we declare that a ~ b if there exists an
x € G such that b = x~'ax. We claim that this defines an equivalence rela-
tion on G. First, a ~ a for a = e 'ae. Second, if a ~ b, then b = xlax, hence
a=(x"1)"'b(x7!),sothat b ~ a. Finally,ifa ~ b, b ~ c, then b = x 'ax,c =
y~!by for some x, y € G. Thus ¢ = y~'(x " 'ax)y = (xy) 'a(xy), and so a ~ c.
We have established that this defines an equivalence relation on G.

This relation, too, plays an important role in group theory and is given
the special name conjugacy. When a ~ b we say that “a and b are conjugate
in G.” Note that if G is abelian, then a ~ b if and only if a = b.

We could go on and on to give numerous interesting examples of equiva-
lence relations, but this would sidetrack us from our main goal in this section.
There will be no lack of examples in the problems at the end of this section.

We go on with our discussion and make the

Definition. If ~ is an equivalence relation on S, then [a], the class of
a,is defined by [a] = (b € S| b ~ a}.

Let us see what the class of a is in the two examples, Examples 3 and 4,
just given.

In Example 3,a ~ bifab™' € H, that is, if ab™' = h, for some h € H.
Thus a ~ b implies that a = hb. On the other hand, if a = kb where k € H,
thenab ! = (kb)b"! =k € H,soa ~ bifand only ifa € Hb = {hb |h € H}.
Therefore, [b] = Hb.

The set Hb is called a right coset of H in G. We ran into such in Prob-
lem 26 of Section 3. Note that b € Hb, since b = eb and e € H (also because
b € [b] = Hb). Right cosets, and left handed counterparts of them called /left
cosets, play important roles in what follows.

In Example 4, we defined a ~ b if b = x"'ax for some x € G. Thus [a] =
{x lax | x € G}. We shall denote [a] in this case as cl(a) and call it the conju-
gacy class of a in G. If G is abelian, then cl(a) consists of a alone. In fact, if
a € Z(G), the center of G, then cl(a) consists merely of a.

The notion of conjugacy and its properties will crop up again often, es-
pecially in Section 11.

We shall examine the class of an element a in Example 2 later in this
chapter.

The important influence that an equivalence relation has on a set is to
break it up and partition it into nice disjoint pieces.



Sec. 4 Lagrange’s Theorem 59

Theorem 2.4.1. If ~ is an equivalence relation on S, then S = U|a],
where this union runs over one element from each class, and where [a] # [b]
implies that [a] N [b] = &. That is, ~ partitions S into equivalence classes.

Proof. Since a € [a], we have U,c¢[a] = S. The proof of the second as-
sertion is also quite easy. We show that if [a] # [b], then [a] N [b] = O, or,
what is equivalent to this, if [a] N [b] # O, then [a] = [b].

Suppose, then, that [a] N [b] # &; let ¢ € [a] N [b]. By definition of
class, ¢ ~ a since ¢ € [a] and ¢ ~ b since ¢ € [b]. Therefore, a ~ ¢ by sym-
metry of ~, and so, since a ~ ¢ and ¢ ~ b, we have a ~ b. Thus a € [b]; if
X € [a], then x ~ a, a ~ b gives us that x ~ b, hence x € [b]. Thus [a] C [b].
The argument is obviously symmetric in a and b, so we have [b] C [a],
whence [a] = [b], and our assertion above is proved.

The theorem is now completely proved. []

We now can prove a famous result of Lagrange.

Theorem 2.4.2 (Lagrange’s Theorem). If G is a finite group and H is
a subgroup of G, then the order of H divides the order of G.

Proof. Let us look back at Example 3, where we established that the
relation a ~ b if ab™' € H is an equivalence relation and that

[a] = Ha = {ha|h € H}.

Let k be the number of distinct classes—call them Ha,, ... , Ha,. By Theo-
rem24.1, G = Ha; U Ha, U - - - U Ha, and we know that Ha; N Ha; = O if
i #].

We assert that any Ha, has | H| = order of H number of elements. Map
H — Ha; by sending h — ha;. We claim that this map is 1-1, for if ha; =
h'a;,then by cancellation in G we would have &4 = h’'; thus the map is 1-1. It
is definitely onto by the very definition of Ha;. So H and Ha; have the same
number, | H |, of elements.

Since G = Ha, U - -- U Ha, and the Ha, are disjoint and each Ha; has
|H| elements, we have that |G| = k|H|. Thus |H| divides |G| and La-
grange’s Theorem is proved. []

Although Lagrange sounds like a French name, J. L. Lagrange (1736-1813) was
actually Italian, having been born and brought up in Turin. He spent most of
his life, however, in France. Lagrange was a great mathematician who made
fundamental contributions to all the areas of mathematics of his day.

If G is finite, the number of right cosets of H in G, namely |G|/|H|, is
called the index of H in G and is written as i; (H).
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Recall that a group G is said to be cyclic if there is an element a € G
such that every element in G is a power of a.

Theorem 2.4.3. A group G of prime order is cyclic.

Proof. If H is a subgroup of G then, by invoking Lagrange’s Theorem,
|H | divides |G| = p, p aprime,so |H| = 1or p. So if H # (e), then H = G. If
a € G, a # e, then the powers of a form a subgroup (a) of G different from
(). So this subgroup is all of G. This says that any x € G is of the form x = a'.
Hence, G is cyclic by the definition of cyclic group. []

If G is finite and a € G, we saw earlier in the proof of Lemma 2.3.2 that
a"@ = e for some n(a) = 1, depending on a. We make the

Definition. If G is finite, then the order of a, written o(a), is the least
positive integer m such that a™ = e.

Suppose that a € G has order m. Consider the set A = {e, a,a*, ..., a™ '};
we claim that A is a subgroup of G (since a” = e) and that the m elements
listed in A are distinct. We leave the verification of these claims to the
reader. Thus |[A| = m = o(a). Since |A| | |G|, we have

Theorem 2.4.4. If G is finite and a € G, then 0(a) | |G|.

If a € G, where G is finite, we have, by Theorem 2.4.4, |G| = k - o(a).
Thus

a|G| — ak-o(a) — (ao(a))k — ek = e.
We have proved the

Theorem 2.4.5. If G is a finite group of order n, then a” = e for all
a€qG.

When we apply this last result to certain special groups arising in num-
ber theory, we shall obtain some classical number-theoretic results due to
Fermat and Euler.

Let Z be the integers and let n > 1 be a fixed integer. We go back to
Example 2 of equivalence relations, where we defined a = b mod n (a
congruent to b mod n) if n|(a — b). The class of a, [a], consists of all
a + nk, where k runs through all the integers. We call it the congruence class

of a.
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By Euclid’s Algorithm, given any integer b, b = gn + r, where
0 < r < n, thus [b] = [r]. So the n classes [0], [1], ..., [n — 1] give us all
the congruence classes. We leave it to the reader to verify that they are
distinct.

Let Z, = {[0], [1], ..., [7» — 1]}. We shall introduce two operations, +
and - in Z,,. Under + Z, will form an abelian group; under - Z, will not form
a group, but a certain piece of it will become a group.

How to define [a] + [b]? What is more natural than to define

[a] + [b] = [a + b].

But there is a fly in the ointment. Is this operation + in Z, well-defined?
What does that mean? We can represent [a] by many a’s—for instance, if
n=3[1] =[4] =[-2] = ---, yet we are using a particular a to define the
addition. What we must show is that if [a] = [a'] and [b] = [b'], then [a + b]
= [a' + b'], for then we will have [a] + [b] = [a + b] = [a' + b'] =
[a'] + [b'].

Suppose that [a] = [a']; then n|(a — a’). Also from [b] = [b'],
n|(b—>b"),hencen|((a—a')+ (b —>b'))=((a+b)— (a'+b")). There-
fore,a + b= (a’' + b') mod n,and so [a + b] = [a’ + b'].

So we now have a well-defined addition in Z,. The element [0] acts as
the identity element and [—a] acts as —[a], the inverse of [a]. We leave it to
the reader to check out that Z, is a group under +. It is a cyclic group of
order n generated by [1].

We summarize this all as

Theorem 2.4.6. Z, forms a cyclic group under the addition [a] + [b] =
[a + b].

Having disposed of the addition in Z,, we turn to the introduction of a
multiplication. Again, what is more natural than defining

[a] - [b] = [ab]?

So, for instance, if n = 9, [2][7] = [14] = [5], and [3][6] = [18] = [0]. Under
this multiplication—we leave the fact that it is well-defined to the reader—
Z, does not form a group. Since [0][a] = [0] for all a, and the unit element
under multiplication is [1], [0] cannot have a multiplicative inverse. Okay,
why not try the nonzero elements [a] # [0] as a candidate for a group under
this product? Here again it is no go if n is not a prime. For instance, if n = 6,
then [2] # [0], [3] # [O], yet [2][3] = [6] = [0], so the nonzero elements do
not, in general, give us a group.

So we ask: Can we find an appropriate piece of Z, that will form a
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group under multiplication? Yes! Let U, = {[a] € Z, | (a, n) = 1}, noting
that (a, n) = 1 if and only if (b, n) = 1 for [a] = [b]. By the Corollary to
Theorem 1.5.5, if (a, n) = 1 and (b, n) = 1, then (ab, n) = 1. So [a][b] = [ab]
yields that if [a], [b] € U,, then [ab] € U, and U, is closed. Associativity is
easily checked, following from the associativity of the integers under multi-
plication. The identity element is easy to find, namely [1]. Multiplication is
commutative in U,,.

Note that if [a][b] = [a][c] where [a] € U,, then we have [ab] = [ac],
and so [ab — ac] = [0]. This says that n|a(b — c) = ab — ac; but a is rela-
tively prime to n. By Theorem 1.5.5 one must have that n | (b — c¢), and so
[b] = [c]. In other words, we have the cancellation property in U,,. By Prob-
lem 2 of Section 2, U, is a group.

What is the order of U,? By the definition of U,, |U,,| = number of in-
tegers 1 = m < n such that (m, n) = 1. This number comes up often and we
give it a name.

Definition. The Euler ¢-function, ¢(n), is defined by ¢(1) = 1 and,
for n > 1, ¢(n) = the number of positive integers m with 1 = m < n such
that (m, n) = 1.

Thus |U,| = ¢(n). If n = p, a prime, we have ¢(p) = p — 1. We see
that ¢ (8) = 4 for only 1, 3, 5, 7 are less than 8 and positive and relatively
prime to 8. We try another one, ¢(15). The numbers 1 = m < 15 relatively
prime to 15 are 1,2, 4,7, 8, 11, 13, 14, so ¢ (15) = 8.

Let us look at some examples of U, .

1. Us = {[1], [3], [5]., [7]}. Note that [3][5] = [15] = [7], [5]* = [25] = [1]. In
fact, Uy is a group of order 4 in which a® = e for every a € Us.

2. Uys = {11, [2], [4], [7], [8], [11], [13], [14]}. Note that [11][13] = [143] =
[8], [2]* = [1], and so on.

The reader should verify that a* = e = [1] for every a € U;s.

3. Uy = {[1], [2], [4], [5], [7], [8]}- Note that [2]' = [2], [2]* = [4], [2]° = [8],
[2°] = [16] = [7], [2]° = [32] = [5]; also [2]° = [2][2]° = [2][5] = [10] = [1].
So the powers of [2] give us every element in Uy. Thus U, is a cyclic group of
order 6. What other elements in U, generate Uy?

In parallel to Theorem 2.4.6 we have

Theorem 2.4.7. U, forms an abelian group, under the product
[a][D] = [ab], of order ¢ (n), where ¢ (n) is the Euler ¢-function.
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An immediate consequence of Theorems 2.4.7 and 2.4.5 is a famous re-
sult in number theory.

Theorem 2.4.8 (Euler). If a is an integer relatively prime to n, then
a*" = 1 mod n.

Proof. U, forms a group of order ¢ (n), so by Theorem 2.4.5, a*™ = ¢
for all a € U,,. This translates into [a*"] = [a]*"” = [1], which in turn trans-
lates into n| (a®*™ — 1) for every integer a relatively prime to p. In other
words, a*"” = 1 mod n. [J

A special case, where n = p is a prime, is due to Fermat.

Corollary (Fermat). If p is a prime and p [ a, then

For any integer b, b = b mod p.

Proof. Since ¢(p) = p — 1, if (a, p) = 1, we have, by Theorem 2.4.8,
that a? ~! = 1(p), hence a' - a?~! = a(p), so that a®? = a(p). If p | b, then
b = 0(p) and b? = 0(p), so that b? = b(p). ]

Leonard Euler (1707-1785) was probably the greatest scientist that Switzerland
has produced. He was the most prolific of all mathematicians ever.

Pierre Fermat (1601-1665) was a great number theorist. Fermat’s Last The-
orem—which was in fact first proved in 1994 by Andrew Wiles—states that the
equation a" + b" = ¢" (a, b, ¢, n being integers) has only the trivial solution where
a=0orb=0orc=0ifn>2.

One final cautionary word about Lagrange’s Theorem. Its converse in
general is not true. That is, if G is a finite group of order n, then it need not
be true that for every divisor m of n there is a subgroup of G of order m. A
group with this property is very special indeed, and its structure can be
spelled out quite well and precisely.

PROBLEMS

Easier Problems

1. Verify that the relation ~ is an equivalence relation on the set S given.
(@) S = Rreals,a ~ b if a — b is rational.
(b) S = C, the complex numbers, a ~ b if |a| = | b]|.
(c) S = straight lines in the plane, a ~ b if a, b are parallel.
(d) S = set of all people, a ~ b if they have the same color eyes.
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* 5.

10.

11.

12.

13.
14.
*185.

*16.

17.

Groups Ch. 2

The relation ~ on the real numbers R defined by a ~ b if both @ > b and
b > a is not an equivalence relation. Why not? What properties of an
equivalence relation does it satisfy?

Let ~ be a relation on a set S that satisfies (1) a ~ b implies that b ~ a
and (2) a ~ b and b ~ c implies that a ~ c. These seem to imply that
a ~ a.Forifa ~ b,thenby (1),b ~a,soa~b,b ~a,soby(2),a~a.lf
this argument is correct, then the relation ~ must be an equivalence rela-
tion. Problem 2 shows that this is not so. What is wrong with the argu-
ment we have given?

Let S be a set, {S,} nonempty subsets such that § = U,S,and §, N Sz =
@ if a # B. Define an equivalence relation on S in such a way that the §,
are precisely all the equivalence classes.

Let G be a group and H a subgroup of G. Define, fora, b € G,a ~ b if
a”'b € H. Prove that this defines an equivalence relation on G, and show
that [a] = aH = {ah|h € H). The sets aH are called left cosets of H
in G.

If Gis S; and H = {i, f}, where f:S — § is defined by f(x;) =
Xy, f(x,) = xq, f(x3) = x3, list all the right cosets of H in G and list all
the left cosets of H in G.

In Problem 6, is every right coset of H in G also a left coset of H in G?

If every right coset of H in G is a left coset of H in G, prove that
aHa ! = Hforalla € G. ,

In Z,¢, write down all the cosets of the subgroup H = {[0], [4], [8], [12]}.
(Since the operation in Z, is +, write your coset as [a] + H. We don’t
need to distinguish between right cosets and left cosets, since Z, is
abelian under +.)

In Problem 9, what is the index of H in Z,4? (Recall that we defined the
index i;(H) as the number of right cosets in G.)

For any finite group G, show that there are as many distinct left cosets of
H in G as there are right cosets of H in G.

If aH and bH are distinct left cosets of H in G, are Ha and Hb distinct
right cosets of H in G? Prove that this is true or give a counterexample.
Find the orders of all the elements of U,z . Is U5 cyclic?

Find the orders of all the elements of U,,. Is U,, cyclic?

If p is a prime, show that the only solutions of x> = 1 mod p are x =
1 modp orx = —1 mod p.

If G is a finite abelian group and a4, ..., a, are all its elements, show
that x = a,a, - - - a, must satisfy x* = e.

If G is of odd order, what can you say about the x in Problem 16?
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18.

19.

20.

21.

22.
23.

24.

25.

Using the results of Problems 15 and 16, prove that if p is an odd prime
number, then (p — 1)! = —1 mod p. (This is known as Wilson’s Theo-
rem.) It is, of course, also true if p = 2.

Find all the distinct conjugacy classes of S5 .

In the group G of Example 6 of Section 1, find the conjugacy class of the
element 7, ,. Describe it in terms of a and b.

Let G be the dihedral group of order 8 (see Example 9, Section 1). Find
the conjugacy classes in G.

Verify Euler’s Theorem for n = 14 and a = 3, and for n = 14 and a = 5.

In U,,, show that there is an element a such that [a]* = [—1], that is, an
integer a such that a* = —1 mod 41.

If p 1s a prime number of the form 4n + 3, show that we cannot solve

x’= —1modp

[Hint: Use Fermat’s Theorem that a” "' = 1mod p if p | a.]

Show that the nonzero elements in Z, form a group under the product
[a][b] = [ab] if and only if n is a prime.

Middle-Level Problems

26.

27.
28.

29.

30.
*31.
32.

33.

34.

Let G be a group, H a subgroup of G, and let S be the set of all distinct
right cosets of H in G, T the set of all left cosets of H in G. Prove that there
is a 1-1 mapping of S onto 7. (Note: The obvious map that comes to mind,
which sends Ha into aH, is not the right one. See Problems 5 and 12.)

If aH = bH forces Ha = Hb in G, show that aHa™' = H for every a € G.

If G is a cyclic group of order n, show that there are ¢ (n) generators for
G. Give their form explicitly.

If in a group G, aba™' = b’, show that a’ba™" = b"’ for all positive inte-
gers 7.

Ifin Ga’ = eand aba™' = b?, find o(b) if b # e.

If o(a) = m and a* = e, prove that m | s.

Let G be a finite group, H a subgroup of G. Let f(a) be the least positive
m such that a” € H. Prove that f(a) | o(a).

Ifi # f € A(S) is such that f? = i, p a prime, and if for some
s €S, f/(s) = sforsome 1 =j < p, show that f(s) = s.

If f € A(S) has order p, p a prime, show that for every s € § the orbit of
s under f has one or p elements. [Recall: The orbit of s under f is

{f’(s)]| j any integer}.]
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If f € A(S) has order p, p a prime, and S is a finite set having n elements,
where (n, p) = 1, show that for some s € S, f(s) = s.

Harder Problems

36.

37.

38.
39.

40.

41.

42.

43.

If @ > 1 is an integer, show that n| ¢(a” — 1), where ¢ is the Euler
¢-function. [Hint: Consider the integers mod(a” — 1).]

In a cyclic group of order n, show that for each positive integer m that di-
vides n (including m = 1 and m = n) there are ¢(m) elements of order m.
Using the result of Problem 37, show that n = 2, ,¢(m).

Let G be a finite abelian group of order n for which the number of solu-
tions of x™ = e is at most m for any m dividing n. Prove that G must be
cyclic. [Hint: Let /() be the number of elements in G of order m. Show
that (m) = ¢(m) and use Problem 38.]

Using the result of Problem 39, show that U,, if p is a prime, is cyclic.
(This is a famous result in number theory; it asserts the existence of a
primitive root mod p.)

Using the result of Problem 40, show that if p is a prime of the form
p = 4n + 1, then we can solve x> = —1 mod p (with x an integer).

Using Wilson’s Theorem (see Problem 28), show that if p is a prime of
the form p = 4n + 1 and if

—q.r.2...p -1 _(p—1),
y=1-2-3 5 (2).,

then y* = —1 mod p. (This gives another proof of the result in Problem
41.)
Let G be an abelian group of order n, and a4, ..., a, its elements. Let

X = aa,---a,.Show that:

(a) If G has exactly one element b # e such that b> = e, then x = b.
(b) If G has more than one element b # e such that b*> = ¢, then x = e.
(¢) If nis odd, then x = e (see Problem 16).

HOMOMORPHISMS AND NORMAL SUBGROUPS

In a certain sense the subject of group theory is built up out of three basic
concepts: that of a homomorphism, that of a normal subgroup, and that of
the factor or quotient group of a group by a normal subgroup. We discuss the
first two of these in this section, and the third in Section 6.

Without further ado we introduce the first of these.
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Definition. Let G, G’ be two groups; then the mapping ¢ : G — G' is
a homomorphism if ¢ (ab) = ¢(a)e(b) for alla, b € G.
(Note: This ¢ has nothing to do with the Euler ¢-function.)

In this definition the product on the left side—in ¢ (ab)—is that of G,
while the product ¢ (a) ¢ (b) is that of G'. A short description of a homomor-
phism is that it preserves the operation of G. We do not insist that ¢ be onto; if
it is, we’ll say that it is. Before working out some facts about homomorphisms,
we present some examples.

Examples

1. Let G be the group of all positive reals under the multiplication of reals,
and G' the group of all reals under addition. Let ¢: G — G’ be defined by
¢(x) = log,ox for x € G. Since log,o(xy) = log,,x + log;,y, we have
e(xy) = @(x) + ¢(y), so ¢ is a homomorphism. It also happens to be onto
and 1-1.

2. Let G be an abelian group and let ¢: G — G be defined by ¢(a) = a°
Since ¢(ab) = (ab)* = a*b*> = ¢(a)p(b), ¢ is a homomorphism of G into it-
self. It need not be onto; the reader should check that in Ug (see Section 4)
a’* = efor all a € Us, so ¢(G) = (e).

3. The example of Uy above suggests the so-called trivial homomorphism. Let
G be any group and G’ any other; define ¢ (x) = e’, the unit element of G,
for all x € G. Trivially, ¢ is a homomorphism of G into G'. It certainly is not
a very interesting one.

Another homomorphism always present is the identity mapping, i, of any
group G into itself. Since i(x) = x for all x € G, clearly i(xy) = xy = i(x)i(y).
The map i is 1-1 and onto, but, again, is not too interesting as a homomor-
phism.

4. Let G be the group of integers under + and G’ = {1, —1}, the subgroup of
the reals under multiplication. Define ¢ (m) = 1 if mis even, ¢ (m) = —1if m
is odd. The statement that ¢ is a homomorphism is merely a restatement of:

even + even = even, even + odd = odd, and odd + odd = even.

5. Let G be the group of all nonzero complex numbers under multiplication
and let G' be the group of positive reals under multiplication. Let ¢ : G — G’
be defined by ¢(a) = |a|; then ¢(ab) = |ab| = |a| |b| = ¢(a)@(b),s0 ¢is a
homomorphism of G into G'. In fact, ¢ is onto.

6. Let G be the group in Example 6 of Section 1, and G’ the group of
nonzero reals under multiplication. Define ¢ : G — G’ by ¢(7, ;) = a. That
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¢ is a homomorphism follows from the product rule in G, namely, 7, ,7, ; =

Tac,ad+b'

7. Let G = Z be the group of integers under + and let G' = Z,. Define
¢:G — Z, by ¢(m) = [m]. Since the addition in Z, is defined by [m] + [r] =
[m + r], we see that o(m + r) = ¢(m) + ¢(r), so ¢ is indeed a homomor-
phism of Z onto Z,.

8. The following general construction gives rise to a well-known theorem.
Let G be any group, and let A(G) be the set of all 1-1 mappings of G onto it-
self—here we are viewing G merely as a set, forgetting about its multiplication.
Define 7,: G — G by T,(x) = ax for every x € G. What is the product, T, T, of
T,and T, as mappings on G? Well,

(T, T,)(x) = T,(Tyx) = T,(bx) = a(bx) = (ab)x = T,,(x)

(we used the associative law). So we see that 7,7, = T,,.

Define the mapping ¢: G — A(G) by ¢(a) = T,, for a € G. The prod-
uct rule for the 7’s translates into ¢ (ab) = T,, = T,T, = ¢(a)¢(b),so ¢is a
homomorphism of G into A(G). We claim that ¢ is 1-1. Suppose that ¢ (a) =
¢(b), thatis, T, = T,. Therefore, a = T,(e) = T,(e) = b, so ¢ is indeed 1-1.
It is not onto in general—for instance, if G has order n > 2, then A(G) has
order n!, and since n! > n, ¢ doesn’t have a ghost of a chance of being onto.
It is easy to verify that the image of ¢, ¢(G) = {T,|a € G}, is a subgroup
of A(G).

The fact that ¢ is 1-1 suggests that perhaps 1-1 homomorphisms should
play a special role. We single them out in the following definition.

Definition. The homomorphism ¢: G — G’ is called a monomor-
phism if ¢ is 1-1. A monomorphism that is onto is called an isomorphism. An
isomorphism from G to G itself is called an automorphism.

One more definition.

Definition. Two groups G and G' are said to be isomorphic if there is
an isomorphism of G onto G'.
We shall denote that G and G' are isomorphic by writing G = G'.

This definition seems to be asymmetric, but, in point of fact, it is not.
For if there is an isomorphism of G onto G’, there is one of G’ onto G (see
Problem 2).

We shall discuss more thoroughly later what it means for two groups to
be isomorphic. But now we summarize what we did in Example 8.
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Theorem 2.5.1 (Cayley’s Theorem). Every group G is isomorphic to
some subgroup of A(S), for an appropriate S.

The appropriate S we used was G itself. But there may be better
choices. We shall see some in the problems to follow.

When G is finite, we can take the set S in Theorem 2.5.1 to be finite, in
which case A(S) is S, and its elements are permutations. In this case, Cay-
ley’s Theorem is usually stated as: A finite group can be represented as a
group of permutations.

(Arthur Cayley (1821-1895) was an English mathematician who worked in ma-
trix theory, invariant theory, and many other parts of algebra.)

This is a good place to discuss the importance of “isomorphism.” Let ¢
be an isomorphism of G onto G'. We can view G' as a relabeling of G,
using the label ¢(x) for the element x. Is this labeling consistent with the
structure of G as a group? That is, if x is labeled ¢(x), y labeled ¢(y), what
is xy labeled as? Since ¢(x)¢(y) = ¢(xy), we see that xy is labeled as
¢ (x)@(y), so this renaming of the elements is consistent with the product in
G. So two groups that are isomorphic—although they need not be equal—in
a certain sense, as described above, are equal. Often, it is desirable to be able
to identify a given group as isomorphic to some concrete group that we
know.

We go on with more examples.

9. Let G be any group, a € G fixed in the discussion. Define ¢ : G — G by
@(x) = a 'xa for all x € G. We claim that ¢ is an isomorphism of G onto
itself. First,

o(xy) = a”'(xy)a = a 'xa-a""ya = ¢(x)e(y),

SO ¢ is at least a homomorphism of G into itself. It is 1-1 for if ¢ (x) = ¢ (y),
then a”'xa = a~lya, so by cancellation in G we get x = y. Finally, ¢ is onto,
forx = a '(axa Y)a = ¢(axa™") for any x € G.
Here ¢ is called the inner automorphism of G induced by a. The notion
of automorphism and some of its properties will come up in the problems.
One final example:

10. Let G be the group of reals under + and let G’ be the group of all
nonzero complex numbers under multiplication. Define ¢ : G — G’ by

¢(x) = cosx + isinx.

We saw that (cos x + i sinx)(cosy + isiny) = cos(x + y) + isin(x + y),
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hence ¢ (x)¢(y) = ¢(x + y) and ¢ is a homomorphism of G into G'. ¢ is not
1-1 because, for instance, ¢(0) = ¢(27) = 1, nor is ¢ onto.

Now that we have a few examples in hand, we start a little investigation
of homomorphisms. We begin with

Lemma 2.5.2. If ¢ is a homomorphism of G into G', then:
(a) ¢(e) = €', the unit element of G'.

(b) ¢(a™ ") = @(a) ' foralla € G.

Proof. Since x = xe, ¢(x) = ¢(xe) = ¢(x)¢(e); by cancellation in G’

we get o(e) = e'. Also, ¢(aa ') = ¢(e) = €', hence ¢’ = @(aa™') =
@(a)e(a'), which proves that ¢(a™!) = ¢(a)”'.[J

Definition. The image of ¢, ¢(G), is ¢(G) = {¢(a) |a € G).
We leave to the reader the proof of

Lemma 2.5.3. If ¢ is a homomorphism of G into G’, then the image
of ¢ 1s a subgroup of G'.

We singled out certain homomorphisms and called them monomor-
phisms. Their property was that they were 1-1. We want to measure how far
a given homomorphism is from being a monomorphism. This prompts the

Definition. If ¢ is a homomorphism of G int¢ G’, then the kernel of
@, Ker ¢, is defined by Ker ¢ = {a € G| ¢(a) = ¢e'}.

Ker ¢ measures the lack of /-1’ ness at one point e’. We claim that
this lack is rather uniform. What is W = {x € G| ¢(x) = w'} for a given
w' € G'? We show that if ¢(x) = w' for some x € G, then W =
lkx |k € Ker ¢} = (Ker ¢)x. Clearly, if k € Ker ¢ and ¢(x) = w’', then
ekx) = e(k)p(x) = e'@(x) = w',s0 kx € W. Also, if o (x) = ¢ (y) = w/',
then ¢(x) = ¢(y), hence ¢(y)e(x)™' = e’s but ¢(x)"' = ¢ (x ") by
Lemma 252,50 ¢/ = o(Ve )" = o(y)e(x™") = ¢(yx~!), whence
yx ' € Ker ¢ and so y € (Ker ¢)x. Thus the inverse image of any element
w'in ¢ (G) € G’ is the set (Ker ¢)x, where x is any element in G such that
e(x) =w'

We state this as

Lemma 254. If w' € G’ is of the form ¢(x) = w’', then
{(y€Gle(y)=w'}= (Ker p)x.
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We now shall study some basic properties of the kernels of homomor-
phisms.

Theorem 2.5.5. If ¢ is a homomorphism of G into G', then
(a) Ker ¢is a subgroup of G.
(b) Givena € G,a" ' (Ker ¢)a C Ker ¢.

Proof. Although this is so important, its proof is easy. If a, b € Ker ¢,
then ¢(a) = ¢(b) = e’, hence ¢(ab) = ¢(a)e(b) = €', whence ab € Ker ¢,
so Ker ¢ is closed under product. Also ¢(a) = e’ implies that ¢(a™ ') =
¢(a)"! = e’, and so a” ' € Ker ¢. Therefore, Ker ¢ is a subgroup of G. If
k € Kergp and a € G, then ¢(k) = e'. Consequently, ¢(a 'ka) =
¢ (@ Nek)p(a) = ¢(ae'p(a) = ¢(a )e(a) = ¢(a 'a) = ¢(e) = e'. This
tells us that a'ka € Ker ¢, hence a™' (Ker ¢) a € Ker ¢. The theorem is
now completely proved. []

Corollary. If ¢ is a homomorphism of G into G', then ¢ is a
monomorphism if and only if Ker ¢ = (e).

Proof. This result is really a corollary to Lemma 2.5.4. We leave the
few details to the reader. []

Property (b) of Ker ¢ in Theorem 2.5.5 is an interesting and basic one
for a subgroup to enjoy. We ran into this property in the text material and
problems earlier on several occasions. We use it to define the ultra-important
class of subgroups of a group.

Definition. The subgroup N of G is said to be a normal subgroup of
Gifa 'Na C N for every a € G.

Of course, Ker ¢, for any homomorphism, is a normal subgroup of G.
As we shall see in the next section, every normal subgroup of G is the kernel
of some appropriate homomorphism of G into an appropriate group G'. So in
a certain sense the notions of homomorphism and normal subgroups will be
shown to be equivalent.

Although we defined a normal subgroup via a~ 'Na C N, we actually
have a™'Na = N. Forifa 'Na C Nforalla € G,then N = a(a” 'Na)a™! C
aNa ' = (a"')"'Na ! C N. So N = aNa™ ' for every a € G. Transposing,
we have Na = aN; that is, every left coset of N in G is a right coset of
Nin G.

On the other hand, if every left coset of N in G is a right coset, then the
left coset aN, which contains a, must be equal to the right coset containing a,
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namely Na. Thus, aN = Na and N = a” ' Na for all a € G, which is to say that
N is normal in G.

We write “N is a normal subgroup of G” by the abbreviated symbol
N <G.

Note that a~!Na = N does not mean that a~'na = n for every n € N.
No—merely that the set of all 2™ !na is the same as the set of all n.

We have proved

Theorem 2.5.6. N <1 G if and only if every left coset of N in G is a
right coset of Nin G.

Before going any further, we pause to look at some examples of kernels
of homomorphisms and normal subgroups.

If G is abelian, then every subgroup of G is normal, for a 'xa = x for
every a, x € G. The converse of this is not true. Nonabelian groups exist in
which every subgroup is normal. See if you can find such an example of order
8. Such nonabelian groups are called Hamiltonian, after the Irish mathemati-
cian W. R. Hamilton (1805-1865). The desired group of order 8 can be found
in the quaternions of Hamilton, which we introduce in Chapter 4, Section 1.

In Example 1, ¢(x) = log;,x, and Ker ¢ = {x]|log,ox = 0} = {1}. In
Example 2, where G is abelian, and ¢ (x) = x2,

Ker o= {x € G|x* = e}

The kernel of the trivial homomorphism of Example 3 is all of G. In Exam-
ple 4, Ker ¢ is the set of all even integers. In Example 5, Ker¢ =
{a € C'| |a| = 1}, which can be identified, from the polar form of a complex
number, as Ker ¢ = {cosx + i sinx|x real}. In Example 6, Ker ¢ =
{T, € G| b real}. In Example 7, Ker ¢ is the set of all multiples of n. In Ex-
amples 8 and 9, the kernels consists of e alone, for the maps are monomor-
phisms. In Example 10, we see that Ker ¢ = {27rm | m any idteger }.

Of course, all the kernels above are normal subgroups of their respec-
tive groups. We should look at some normal subgroups, intrinsically in G it-
self, without recourse to the kernels of homomorphism. We go back to the
examples of Section 1.

1. In Example 7, H = {T, , € G | a rational}. If T, , € G, we leave it to the
reader to check that 7}, HT, ,C Handso H < G.

2. In Example 9 the subgroup {i, g, g°, g’} < G. Here too we leave the
checking to the reader.

3. In Example 10 the subgroup H = {i, h, k%, ..., "1} is normal in G. This
we also leave to the reader.
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4. If G is any group, Z(G), the center of G, is a normal subgroup of G (see
Example 11 of Section 3).

5.If G = S5, G has the elements i, f, g, g°, fg, and gf, where f(x,) = x,,
f(x2) = x1, f(x3) = x; and g(x1) = x3, 8(x2) = x3, g(x3) = x;. We claim
that the subgroup N = {i, g, g’} < S;. As we saw earlier (or can compute

now), fgf '=g ' =g, R f =8 (fg)g(fe) = feeg \f =faf ' =
g%, and so on. So N < S, follows.

The material in this section has been a rather rich diet. It may not seem
so, but the ideas presented, although simple, are quite subtle. We recom-
mend that the reader digest the concepts and results thoroughly before going
on. One way of seeing how complete this digestion is, is to take a stab at
many of the almost infinite list of problems that follow. The material of the
next section is even a richer diet, and even harder to digest. Avoid a mathe-
matical stomachache later by assimilating this section well.

PROBLEMS

Easier Problems

1. Determine in each of the parts if the given mapping is a homomorphism.
If so, identify its kernel and whether or not the mapping is 1-1 or onto.
(@) G =Zunder +,G' = Z,, ¢(a) = [a] fora € Z.

(b) G group, ¢: G — G defined by ¢(a) = a ! fora € G.

(¢) G abelian group, ¢ : G — G defined by ¢(a) = a ' fora € G.

(d) G group of all nonzero real numbers under multiplication, G' =
{1, =1}, ¢(r) = 1 if ris positive, ¢(r) = —1 if r is negative.

(e) G an abelian group, n > 1 a fixed integer, and ¢ : G — G defined by
¢(a) =a"fora € G.

2. Recall that G = G’ means that G is isomorphic to G'. Prove that for all

groups G, G,, G;:

@ G, =Gy,

(b) G, = G, implies that G, = G;.

(¢) G, =G,, G, = G;implies that G; = G3.

3. Let G be any group and A (G) the set of all 1-1 mappings of G, as a set,
onto itself. Define L,: G — G by L,(x) = xa™ . Prove that:

@ L, € A(G).

(b) L Ly = Lgy.

(¢) The mapping ¢: G - A(G) defined by (a) = L, is a monomor-
phism of G into A (G).
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4.

10.

11.

12.

13.

14.

15.

16.

17.
18.
19.

20.
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In Problem 3 prove that for alla, b € G, T,L, = L,T,, where T, is de-
fined as in Example 8.

In Problem 4, show that if V € A(G) is such that 7,V = VT, for all
a € G, then V = L, for some b € G. (Hint: Acting on e € G, find out
what b should be.)

Prove that if ¢ : G — G’ is a homomorphism, then ¢ (G), the image of G,
is a subgroup of G'.

Show that ¢ : G — G’, where ¢ i1s a homomorphism, is a monomorphism
if and only if Ker ¢ = (e).

Find an isomorphism of G, the group of all real numbers under +, onto
G', the group of all positive real numbers under multiplication.

Verify that if G is the group in Example 6 of Section 1, and H =
{T, , € G|arational}, then H <1 G, the dihedral group of order 8.
Verify that in Example 9 of Section 1, the set H = {i, g, g, g’} is a nor-
mal subgroup of G, the dihedral group of order 8.

Verify that in Example 10 of Section 1, the subgroup
H={ihh, ..., h" "

is normal in G.
Prove that if Z(G) is the center of G, then Z(G) < G.
If G is a finite abelian group of order n and ¢: G — G is defined by

¢(a) = a™ for all a € G, find the necessary and sufficient condition that
¢ be an isomorphism of G onto itself.

If G is abelian and ¢ : G — G' is a homomorphism of G onto G', prove
that G’ is abelian.

If G is any group, N < G, and ¢: G — G' a homomorphism of G onto
G', prove that the image, ¢ (N), of N is a normal subgroup of G'.

If N<<Gand M <G and MN = {mn|m € M, n € N}, prove that MN is

a subgroup of G and that MN < G.

If M 1G,N <G, prove that M N N < G.

If H is any subgroup of G and N = N,c; a 'Ha, prove that N < G.

If H is a subgroup of G, let N(H) be defined by the relation N(H) =

{a € G|a 'Ha = H}. Prove that:

(a) N(H) is a subgroup of G and N(H) D H.

(b) HIN(H).

(¢) If K is a subgroup of G such that H < K, then K C N(H). [So N(H)
is the largest subgroup of G in which H is normal.]

IfM<1G,N<G,and M N N = (e), show that form € M,n € N, mn = nm.
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21. Let S be any set having more than two elements and A(S) the set of
all 1-1 mappings of S onto itself. If s € S, we define H(s) =
{f€ A(S) | f(s) = s}. Prove that H(s) cannot be a normal subgroup of A(S).

22. Let G = S, the symmetric group of degree 3 and let H = {i, f}, where
f(x1) = x2, f(x2) = x4, f(x3) = x3.
(a) Write down all the left cosets of H in G.
(b) Write down all the right cosets of H in G.
(c) Is every left coset of H a right coset of H?

23. Let G be a group such that all subgroups of G are normal in G. If
a, b € G, prove that ba = a’b for some ;.

24, If G, G, are two groups, let G = G; X G,, the Cartesian product of G,
G, [i.e., G is the set of all ordered pairs (a, b) where a € G, b € G,].
Define a product in G by (a;, b;)(a,, b,) = (a,1a,, b,b,).

(a) Prove that G is a group.

(b) Show that there is a monomorphism ¢; of G, into G such that
¢1(G,) < G, given by ¢,(a;) = (a;, e,), where e, is the identity ele-
ment of G,.

(¢) Find the similar monomorphism ¢, of G, into G.

(d) Using the mappings ¢;, ¢, of Parts (b) and (c), prove that
¢1(G)e,(G,) = G and ¢,(G,) N ¢,(G,) is the identity element of G.

(e) Prove that G; X G, = G, X G;.

25. Let G be a group and let W = G X G as defined in Problem 24. Prove that:
(a) The mapping ¢ : G — W defined by ¢ (a) = (a, a) is a monomorphism

of G into W.

(b) The image ¢(G) in W [i.e., {(a, a) | a € G}] is normal in W if and only

if G is abelian.

Middle-Level Problems

*26. If G is a group and a € G, define 0,: G — G by 0,(g) = aga™'. We saw
in Example 9 of this section that o, is an isomorphism of G onto itself, so
o, € A(G), the group of all 1-1 mappings of G (as a set) onto itself. De-
fine : G — A(G) by ¥(a) = o, for all a € G. Prove that:
(a) ¢ is a homomorphism of G into A (G).
(b) Ker ¢y = Z(G), the center of G.
27. If 6 is an automorphism of G and N < G, prove that 6(N) < G.

28. Let 6, ¢ be automorphisms of G, and let 6y be the product of 0 and ¢ as
mappings on G. Prove that 8¢ is an automorphism of G, and that ' is
an automorphism of G, so that the set of all automorphisms of G is itself
a group.
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*29. A subgroup 7T of a group W is called characteristic if ¢ (T) C T for all au-
tomorphisms, ¢, of W. Prove that:

(a) M characteristic in G implies that M < G.

(b) M, N characteristic in G implies that MN is characteristic in G.

(c¢) A normal subgroup of a group need not be characteristic. (This is
quite hard; you must find an example of a group G and a noncharac-
teristic normal subgroup.)

30. Suppose that |G| = pm, where p/m and p is a prime. If H is a normal
subgroup of order p in G, prove that H is characteristic.

31. Suppose that G is an abelian group of order p"m where p |/ m is a prime.
If H 1s a subgroup of G of order p”, prove that H is a characteristic sub-
group of G.

32. Do Problem 31 even if G is not abelian if you happen to know that for
some reason or other H < G.

33. Suppose that N < G and M C N is a characteristic subgroup of N. Prove
that M <1 G. (It is not true that if M < N and N < G, then M must be
normal in G. See Problem 50.)

34. Let G be a group, 4(G) the group of all automorphisms of G. (See Prob-
lem 28.) Let I(G) = {o,|a € G}, where o, is as defined in Problem 26.
Prove that I(G) < A(G).

35. Show that Z(G), the center of G, is a characteristic subgroup of G.

36. If N < G and H is a subgroup of G, show that H N N < H.
Harder Problems

37. If G is a nonabelian group of order 6, prove that G = §;.
38. Let G be a group and H a subgroup of G. Let S = {Ha|a € G} be the
set of all right cosets of H in G. Define, forb € G, T,:S — S by T,(Ha)
= Hab™ .
(a) Prove that 7,7, = T, for all b, c € G [therefore the mapping
y: G — A(S) defined by ¢(b) = T, is a homomorphism].
(b) Describe Ker ¢, the kernel of y: G — A(S).
(c¢) Show that Ker ¢ is the largest normal subgroup of G lying in H
[largest in the sense that if N <1 G and N C H, then N C Ker y].

39. Use the result of Problem 38 to redo Problem 37.

Recall that if H is a subgroup of G, then the index of H in G, iz(H), is
the number of distinct right cosets of H and G (if this number is finite).

40. If G is a finite group, H a subgroup of G such that n/i;(H)! where n =
|G|, prove that there is a normal subgroup N # (e) of G contained in H.
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41. Suppose that you know that a group G of order 21 contains an element a
of order 7. Prove that A = (a), the subgroup generated by a, is normal in
G. (Hint: Use the result of Problem 40.)

42, Suppose that you know that a group G of order 36 has a subgroup H or
order 9. Prove that either H <{ G or there exists a subgroup N < G,
N C H,and |[N| = 3.

43. Prove that a group of order 9 must be abelian.

44. Prove that a group of order p*, p a prime, has a normal subgroup of
order p.

45. Using the result of Problem 44, prove that a group of order p?, p a
prime, must be abelian.

46. Let G be a group of order 15; show that there is an element a # e in G
such that a®> = e and an element b # e such that b° = e.

47. In Problem 46, show that both subgroups A = {e, a, a’} and B =
{e, b, b%, b*, b*} are normal in G.

48. From the result of Problem 47, show that any group of order 15 is cyclic.
Very Hard Problems

49. Let G be a group, H a subgroup of G such that i; (H) is finite. Prove that
there is a subgroup N C H, N < G such that i; (N) is finite.

50. Construct a group G such that G has a normal subgroup N, and N has a
normal subgroup M (i.e., N <1 G, M < N), yet M is not normal in G.

51. Let G be a finite group, ¢ an automorphism of G such that ¢’ is the iden-
tity automorphism of G. Suppose that ¢(x) = x implies that x = e. Prove
that G is abelian and ¢ (a) = a” ! foralla € G.

52. Let G be a finite group and ¢ an automorphism of G such that ¢(x) =
x ! for more than three-fourths of the elements of G. Prove that ¢(y) =
y~lforall y € G, and so G is abelian.

6. FACTOR GROUPS

Let G be a group and N a normal subgroup of G. In proving Lagrange’s The-
orem we used, for an arbitrary subgroup H, the equivalence relation a ~ b if
ab™! € H. Let’s try this out when N is normal and see if we can say a little
more than one could say for just any old subgroup.

So,leta ~ bifab™! € N and let [a] = {x € G|x ~ a). As we saw
earlier, [a] = Na, the right coset of N in G containing a. Recall that in
looking at Z, we defined for it an operation + via [a] + [b] = [a + b]. Why
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not try something similar for an arbitrary group G and a normal subgroup
N of G?

Solet M = {[a] | a € G}, where [a] = {x € G|xa~! € N} = Na. We de-
fine a product in M via [a][b] = [ab]. We shall soon show that M is a group
under this product. But first and foremost we must show that this product in
M is well-defined. In other words, we must show that if [@] = [a'] and [b] =
[b'], then [ab] = [a'b’], for this would show that [a][b] = [ab] = [a'b'] =
[a'][b']; equivalently, that this product of classes does not depend on the par-
ticular representatives we use for the classes.

Therefore let us suppose that [a] = [a'] and [b] = [b']. From the defi-
nition of our equivalence we have that a’ = na, where n € N. Similarly,
b' = mb, where m € N. Thus a'b’ = namb = n(ama ')ab; since N < G,
ama™! is in N, so n(ama™') is also in N. So if we let n; = n(ama™"'), then
n; € N and a'b’ = n,ab. But this tells us that a'b’ € Nab, so that
a'b’ ~ ab, from which we have that [a'b'] = [ab], the exact thing we re-
quired to ensure that our product in M was well-defined.

Thus M is now endowed with a well-defined product [a][b] = [ab].
We now verify the group axioms for M. Closure we have from the very def-
inition of this product. If [a], [b], and [c] are in M, then [a]([b][c]) =
[a][bc] = [a(bc)] = [(ab)c] (since the product in G is associative) =
[ab][c] = ([a][b])[c]- Therefore, the associative law has been established
for the product in M. What about a unit element? Why not try the obvious
choice, namely [e]? We immediately see that [a][e] = [ae] = [a] and
[e][a] = [ea] = [a], so [e] does act as the unit element for M. Finally, what
about inverses? Here, too, the obvious choice is the correct one. If a € G,
then [a][a™!] = [aa”!] = [e], hence [a~ '] acts as the inverse of [a] relative
to the product we have defined in M.

We want to give M a name, and better still, a symbol that indicates its
dependence on G and N. The symbol we use for M is G/N (read “G over N or
G mod N”) and G/N is called the factor group or quotient group of G by N.

What we have shown is the very important

Theorem 2.6.1. If N1 G and
GI/N = {la]|la€ G} = {Na|a € G},

then G/N is a group relative to the operation [a][b] = [ab].
One observation must immediately be made, namely

Theorem 2.6.2. If N < G, then there is a homomorphism ¢ of G onto
G/N such that Ker i, the kernel of ¢, is N.
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Proof. The most natural mapping from G to G/N is the one that
does the trick. Define ¢ : G — G/N by ¢ (a) = [a]. Our product as defined
in G/N makes of ¢y a homomorphism, for ¢ (ab) = [ab] = [a][b] =
¥ (a)y (b). Since every element X € G/N is of the form X = [b] = ¢ (b) for
some b € G, ¢ is onto. Finally, what is the kernel, Ker ¢, of ¢? By defini-
tion, Ker ¢y = {a € G | ¥ (a) = E}, where E is the unit element of G/N. But
what is E? Nothing other than E = [e] = Ne = N, and a € Ker ¢ if and
only if £E = N = (a) = Na. But Na = N tells us that a = ea € Na = N, so
we see that Ker ¢ C N. That N C Ker yy—which is easy—we leave to the
reader. So Ker y = N. [

Theorem 2.6.2 substantiates the remark we made in the preceding sec-
tion that every normal subgroup N of G is the kernel of some homomor-
phism of G onto some group. The “some homomorphism” is the ¢ defined
above and the “some group” is G/N.

This construction of the factor group G by N is possibly the single most
important construction in group theory. In other algebraic systems we shall
have analogous constructions, as we shall see later.

One might ask: Where in this whole affair did the normality of N in G
enter? Why not do the same thing for any subgroup H of G? So let’s try and
see what happens. As before, we define

W = {la]|la€ G} = {Ha|a € G}

where the equivalence a ~ b is defined by ab™! € H. We try to introduce a
product in W as we did for G/N by defining [a][b] = [ab]. Is this product well
defined? If # € H, then [hb] = [b], so for the product to be well defined, we
would need that [a][b] = [a][hb], that is, [ab] = [ahb]. This gives us that Hab
= Hahb, and so Ha = Hah; this implies that H = Haha™', whence aha™' € H.
That is, for all a € G and all # € H, aha ! must be in H; in other words, H
must be normal in G. So we see that in order for the product defined in W to
be well-defined, H must be a normal subgroup of G.

We view this matter of the quotient group in a slightly different way. If
A, B are subsets of G, let AB = {ab|a € A, b € B}. If H is a subgroup of G,
then HH C H is another way of saying that H is closed under the product
of G.

Let G/N = {Na|a € G) be the set of all right cosets of the normal sub-
group N in G. Using the product of subsets of G as defined above, what is
(Na)(Nb)? By definition, (Na)(Nb) consists of all elements of the form
(na)(mb), where n,m € N, and so

(na)(mb) = (nama=")(ab) = n,ab,
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where n; = nama™'is in N, since N is normal. Thus (Na)(Nb) C Nab. On the
other hand, if n € N, then

n(ab) = (na)(eb) € (Na)(Nb),

so that Nab C (Na)(Nb). In short, we have shown that the product—as sub-
sets of G—of Na and Nb is given by the formula (Na)(Nb) = Nab. All the
other group axioms for G/N, as defined here, are now readily verified from
this product formula.

Another way of seeing that (Na)(Nb) = Nab is to note that by the nor-
mality of N, aN = Na, hence (Na)(Nb) = N(aN)b = N(Na)b = NNab =
Nab, since NN = N (because N is a subgroup of G).

However we view G/N—as equivalence classes or as a set of certain
subsets of G—we do get a group whose structure is intimately tied to that of
G, via the natural homomorphism ¢ of G onto G/N.

We shall see very soon how we combine induction and the structure of
G/N to get information about G.

When G is a finite group and N < G, then the number of right cosets of
N in G, i;(N), is given—as the proof of Lagrange’s Theorem showed—by
ic(n) = |G|/|N|. But this is the order of G/N, which is the set of all the right
cosets of N in G. Thus |G/N| = |G|/|N|. We state this more formally as

Theorem 2.6.3. If G is a finite group and N < G, then |G/N| =
|GI/IN].

As an application of what we have been talking about here, we shall
prove a special case of a theorem that we shall prove in its full generality
later. The proof we give—for the abelian case—is not a particularly good
one, but it illustrates quite clearly a general technique, that of pulling back
information about G/N to get information about G itself.

The theorem we are about to prove is due to the great French mathematician
A. L. Cauchy (1789-1857), whose most basic contributions were in complex
variable theory.

Theorem 2.6.4 (Cauchy). If G is a finite abelian group of order |G|
and p is a prime that divides |G|, then G has an element of order p.

Proof. Before getting involved with the proof, we point out to the
reader that the theorem is true for any finite group. We shall prove it in the
general case later, with a proof that will be much more beautiful than the one
we are about to give for the special, abelian case.

We proceed by induction on |G|. What does this mean precisely? We shall
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assume the theorem to be true for all abelian groups of order less than |G| and
show that this forces the theorem to be true for G. If |G| = 1, there is no such p
and the theorem is vacuously true. So we have a starting point for our induction.

Suppose that there is a subgroup (e) # N # G. Since |N| < |G|, if p di-
vides | N|, by our induction hypothesis there would be an element of order p
in N, hence in G, and we would be done. So we may suppose that p/|N|.
Since G is abelian, every subgroup is normal, so we can form G/N. Because p
divides |G| and p/|N]|, and because |G/N| = |G|/|N|, we have that p
divides |G/N|. The group G/N is abelian, since G is (Prove!) and since
N # (e), |N| > 1,s0 |G/N| = |G|/|N| < |G|. Thus, again by induction, there
exists an element in G/N of order p. In other words, there exists an a € G
such that [a]? = [e], but [a] # [e]. This translates to a”? € N, a & N. So if
m = |N|, then (a?)™ = e. So (a™)” = e. If we could show that b = a™ # e,
then b would be the required element of order p in G. But if a” = e, then
[a]™ = [e], and since [a] has order p, p | m (see Problem 31 of Section 4). But,
by assumption, p | m = |N|. So we are done if G has a nontrivial subgroup.

But if G has no nontrivial subgroups, it must be cyclic of prime order.
(See Problem 16 of Section 3, which you should be able to handle more eas-
ily now.) What is this “prime order”? Because p divides |G|, we must have
|G| = p. But then any element a # e € G satisfies a” = e and is of order p.
This completes the induction, and so proves the theorem. [ ]

We shall have other applications of this kind of group-theoretic argu-
ment in the problems.

The notion of a factor group is a very subtle one, and of the greatest
importance in the subject. The formation of a new set from an old one by
using as elements of this new set subsets of the old one is strange to the neo-
phyte seeing this kind of construction for the first time. So it is worthwhile
looking at this whole matter from a variety of points of view. We consider
G/N from another angle now.

What are we doing when we form G/N? Sure, we are looking at equiva-
lences classes defined via N. Let’s look at it another way. What we are doing
is identifying two elements in G if they satisfy the relation ab™' € N. In a
sense we are blotting out N. So although G/N is not a subgroup of G, we can
look at it as G, with N blotted out, and two elements as equal if they are
equal “up to N.”

For instance, in forming Z/N, where Z is the group of integers and N is
the set of all multiples of 5 in Z, what we are doing is identifying 1 with 6, 11,
16, —4, —9, and so on, and we are identifying all multiples of 5 with 0. The
nice thing about all this is that this identification jibes with addition in Z
when we go over to Z/N.

Let’s look at a few examples from this point of view.
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1. Let G = {T,,|a # 0, b real} (Example 6 of Section 1). Let N =
{T, | b real} C G; we saw that N < G, so it makes sense to talk about G/N.
Now T, , and T, , are in the same left coset of N in G, so in G/N we are get-
ting an element by identifying 7, , with 7, . The latter element just depends
on a. Moreover, the T, , multiply according to T, ,T, ; = T,. ,4+» and if we
identify T, , with T, o, T, ; with T, o, then their product, which is 7, ;45,18
identified with 7,. ,. So in G/N multiplication is like that of the group of
nonzero real numbers under multiplication, and in some sense (which will be
made more precise in the next section) G/N can be identified with this group
of real numbers.

2. Let G be the group of real numbers under + and let Z be the group of in-
tegers under +. Since G is abelian, Z < G, and so we can talk about G/Z.
What does G/Z really look like? In forming G/Z, we are identifying any two
real numbers that differ by an integer. So 0 is identified with —1, =2, -3, ...
and 1, 2, 3, ... ; 3 is identified with £, 3, —3, —2, .. .. Every real number a
thus has a mate, @, where 0 =< g < 1. So, in G/Z, the whole real line has been
compressed into the unit interval [0, 1]. But a little more is true, for we have
also identified the end points of this unit interval. So we are bending the unit
interval around so that its two end points touch and become one. What do
we get this way? A circle, of course! So G/Z is like a circle, in a sense that
can be made precise, and this circle is a group with an appropriate product.

3. Let G be the group of nonzero complex numbers and let N =
{a € G| |a| = 1} which is the unit circle in the complex plane. Then N is a
subgroup of G and is normal since G is abelian. In going to G/N we are de-
claring that any complex number of absolute value 1 will be identified with the
real number 1. Now any a € G, in its polar form, can be written as a =
r(cos 6 + i sin 6), where r = |a|, and |cos 8 + i sin ] = 1. In identifying
cos 6 + i sin 6 with 1, we are identifying a with r. So in passing to G/N every
element is being identified with a positive real number, and this identification
jibes with the products in G and in the group of positive real numbers, since
lab| = |a||b|. So G/N is in a very real sense (no pun intended) the group of
positive real numbers under multiplication.

PROBLEMS

1. If G is the group of all nonzero real numbers under multiplication and N
is the subgroup of all positive real numbers, write out G/N by exhibiting
the cosets of N in G, and construct the multiplication in G/N.

2. If G is the group of nonzero real numbers under multiplication and
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10.

11.

12.

13.

14.

N = {1, —1}, show how you can “identify” G/N as the group of all
positive real numbers under multiplication. What are the cosets of
Nin G?

If G is a group and N < G, show that if M is a subgroup of G/N and M =
{a € G| Na € M}, then M is a subgroup of G,and M D N.

If M in Problem 3 is normal in G/N, show that the M defined is normal
in G.

In Problem 3, show that M/N must equal M.

Arguing as in the Example 2, where we identified G/Z as a circle, where
G is the group of reals under + and Z integers, consider the following:
let G = {(a, b) | a, b real}, where + in G is defined by (a, b) + (c, d) =
(a + ¢, b + d) (so G is the plane), and let N = {(a, b) € G | a, b are inte-
gers }. Show that G/N can be identified as a torus (donut), and so we can
define a product on the donut so that it becomes a group. Here, you may
think of a torus as the Cartesian product of two circles.

If G is a cyclic group and N is a subgroup of G, show that G/N is a cyclic
group.

If G is an abelian group and N is a subgroup of G, show that G/N is an
abelian group.

Do Problems 7 and 8 by observing that G/N is a homomorphic image
of G.

Let G be an abelian group of order p{!p52 - - - pi*, where py, p,, ..., Pk
are distinct prime numbers. Show that G has subgroups S, S,, ..., S; of
orders p4l, p%2, ..., pi, respectively. (Hint: Use Cauchy’s Theorem and

pass to a factor group.) This result, which actually holds for all finite
groups, is a famous result in group theory known as Sylow’s Theorem.
We prove it in Section 11.

If G is a group and Z(G) the center of G, show that if G/Z(G) is cyclic,
then G is abelian.

If Gis a group and N < G is such that G/N is abelian, prove that
aba 'b"'€ Nforalla, b € G.

If G is a group and N <1 G is such that
aba”'b"' €N

for all a, b € G, prove that G/N is abelian.

If G is an abelian group of order p, p, - - - px, where py, p,,..., py are
distinct primes, prove that G is cyclic. (See Problem 15.)
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15. If G is an abelian group and if G has an element of order m and one of
order n, where m and n are relatively prime, prove that G has an element
of order mn.

16. Let G be an abelian group of order p”"m, where p is a prime and p | m.
Let P = {a € G |a”* = e for some k depending on a}. Prove that:
(a) P is asubgroup of G.
(b) G/P has no elements of order p.
(o) |P|=p".
17. Let G be an abelian group of order mn, where m and n are relatively
prime. Let M = {a € G| a™ = e}. Prove that:
(a) M is a subgroup of G.
(b) G/M has no element, x, other than the identity element, such that
x™ = unit element of G/M.

18. Let G be an abelian group (possibly infinite) and let the set 7 =
{a € G|a™ = e, m > 1 depending on a}. Prove that:
(a) T is a subgroup of G.
(b) G/T has no element—other than its identity element—of finite order.

7. THE HOMOMORPHISM THEOREMS

Let G be a group and ¢ a homomorphism of G onto G'. If K is the kernel of
¢, then K is a normal subgroup of G, hence we can form G/K. It is fairly nat-
ural to expect that there should be a very close relationship between G' and
G/K. The First Homomorphism Theorem, which we are about to prove,
spells out this relationship in exact detail.

But first let’s look back at some of the examples of factor groups in
Section 6 to see explicitly what the relationship mentioned above might be.

1. Let G = {T, ,|a # 0, b real} and let G’ be the group of nonzero reals
under multiplication. From the product rule of these 7°s, namely
T,sT.4= T, 2a+», We determined that the mapping ¢ : G — G’ defined
by ¢(7,,) = a is a homomorphism of G onto G’ with kernel K =
{T , | b real}. On the other hand, in Example 1 of Section 6 we saw that
G/K = {KT, | a # 0 real}. Since

(KTa, 0) (KTx, 0) = KTax, 0

the mapping of G/K onto G', which sends each KT, , onto a, is readily
seen to be an isomorphism of G/K onto G'. Therefore, G/K = G'.

2. In Example 3, G was the group of nonzero complex numbers under multipli-
cation and G’ the group of all positive real numbers under multiplication.
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Let ¢: G — G’ defined by ¢ (a) = |a| for a € G. Then, since |ab| =
la| | b|, ¢ is a homomorphism of G onto G’ (can you see why it is onto?).
Thus the kernel K of ¢ is precisely K = {a € G | |a| = 1}. But we have al-
ready seen that if |a| = 1, then a is of the form cos 6 + i sin 6. So the set
K ={cos@ + isinf|0 < 6 < 27). If a is any complex number, then
a = r(cos 0 + i sin 6), where r = |a|, is the polar form of a. Thus Ka =
Kr(cos 6 + isin §) = K(cos 6 + isin 6)r = Kr, since K(cos 0 + i sinf) = K
because cos 0 + i sin § € K. So G/K, whose elements are the cosets Ka,
from this discussion, has all its elements of the form Kr, where r > 0. The
mapping of G/K onto G' defined by sending Kr onto r then defines an iso-
morphism of G/K onto G'. So, here, too, G/K = G'.

With this little experience behind us we are ready to make the jump the
whole way, namely, to

Theorem 2.7.1 (First Homomorphism Theorem). Let ¢ be a homo-
morphism of G onto G’ with kernel K. Then G' = G/K, the isomorphism be-
tween these being effected by the map

v:GIK— G’

defined by ¢ (Ka) = ¢(a).

Proof. The best way to show that G/K and G’ are isomorphic is to ex-
hibit explicitly an isomorphism of G/K onto G'. The statement of the theo-
rem suggests what such an isomorphism might be.

So define ¢ : G/IK — G’ by y(Ka) = ¢(a) for a € G. As usual, our first
task is to show that ¢ is well defined, that is, to show that if Ka = Kb, then
Y (Ka) = ¢(Kb). This boils down to showing that if Ka = Kb, then ¢(a) =
¢(b). But if Ka = Kb, then a = kb for some k € K, hence ¢(a) = ¢(kb) =
¢ (k)@ (b). Since k € K, the kernel of ¢, then ¢ (k) = e’, the identity element
of G', so we get ¢(a) = ¢(b). This shows that the mapping ¢ is well defined.

Because ¢ is onto G', given x € G’', then x = ¢(a) for some a € G,
thus x = ¢(a) = ¢ (Ka). This shows that ¢ maps G/K onto G'.

Is ¢ 1-1? Suppose that (Ka) = ¢(Kb); then ¢(a) = ¢(Ka) =
¥ (Kb) = ¢(b). Therefore, e’ = @(a)e((b)™ ! = @(a)e(b™') = @(ab™!). Be-
cause ab~! is thus in the kernel of ¢—which is K—we have ab™! € K. This
implies that Ka = Kb. In this way ¢ is seen to be 1-1.

Finally, is ¢ a homomorphism? We check: ¢ ((Ka)(Kb)) = (Kab) =
¢(ab) = ¢(a)e(b) = Y(Ka)y(Kb), using that ¢ is a homomorphism and
that (Ka)(Kb) = Kab. Consequently, ¢ is a homomorphism of G/K onto G,
and Theorem 2.7.1 is proved. [J
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Having talked about the First Homomorphism Theorem suggests that
there are others. The next result, however, is an extension of the First
Homomorphism Theorem, and is traditionally called the Correspondence
Theorem. In the context of the theorem above, it exhibits a 1-1 correspon-
dence between subgroups of G' and those subgroups of G that contain K.

Theorem 2.7.2 (Correspondence Theorem). Let the map ¢: G — G’ be
a homomorphism of G onto G’ with kernel K. If H' is a subgroup of G’ and if

H = {a€ G|e(a) € H),

then H is a subgroup of G, H D K, and H/K = H'. Finally, if H' < G’, then
HG.

Proof. We first verify that the H above is a subgroup of G. It is not
empty, since e € H. If a, b € H, then ¢(a), ¢(b) € H', hence ¢(ab) =
¢(a)e(b) € H', since H' is a subgroup of G’; this puts ab in H, so H is
closed. Further, if a € H, then ¢(a) € H', hence ¢(a™!) = ¢(a) 'isin H’,
again since H' is a subgroup of G', whence a~' € H. Therefore, H is a sub-
group of G.

Because ¢ (K) = {e'} C H', where e’ is the unit element of G', we have
that K C H. Since K < G and K C H, it follows that K < H. The mapping ¢
restricted to H defines a homomorphism of H onto H' with kernel K. By the
First Homomorphism Theorem we get H/K = H'.

Finally, if H' < G' and if a € G, then ¢(a)"'H'¢(a) C H', so
@o(a")H'¢(a) C H'. This tells us that ¢ (a 'Ha) C H', so a 'Ha C H. This
proves the normality of H in G. []

It is worth noting that if K is any normal subgroup of G, and ¢ is the
natural homomorphism of G onto G/K, then the theorem gives us a 1-1 cor-
respondence between all subgroups H' of G/K and those subgroups of G
that contain K. Moreover, this correspondence preserves normality in the
sense that H' is normal in G/K if and only if H is normal in G. (See Problem
7, as well as the last conclusion of the theorem.)

We now state the Second Homomorphism Theorem, leaving its proof
to the reader in Problem 5.

Theorem 2.7.3 (Second Homomorphism Theorem). Let H be a sub-
group of a group G and N a normal subgroup of G. Then HN =
{hn|h € H,n € N} is a subgroup of G, H N N is a normal subgroup of H,
and H/(H N N) = (HN)/N.
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Finally, we go on to the Third Homomorphism Theorem, which tells us
a little more about the relationship between N and N’ when N' 1 G".

Theorem 2.7.4 (Third Homomorphism Theorem). If the map
¢: G — G'1s a homomorphism of G onto G’ with kernel K then, if N' 1 G’
and N = {a € G| ¢(a) € N'}, we conclude that G/N = G'/N’. Equivalently,
G/N = (G/K)/(NIK).

Proof. Define the mapping ¢: G — G'/N' by ¢s(a) = N'¢(a) for every
a € G. Since ¢ is onto G’ and every element of G'/N' is a coset of the form
N'x',and x" = ¢(x) for some x € G, we see that ¢y maps G onto G'/N'.

Furthermore, ¢ is a homomorphism of G onto G'/N’, for (ab) =
N'e(ab) = N'p(a)e(b) = (N'¢(a))(N'¢(b)) = ¥ (a)y(b), since N 1 G".
What is the kernel, M, of y? If a € M, then ¢(a) is the unit element of
G'IN', that is, y(a) = N'. On the other hand, by the definition of ¢, ¢ (a) =
N'¢(a). Because N'¢(a) = N' we must have ¢ (a) € N'; but this puts a in N,
by the very definition of N. Thus M C N. That N C M is easy and is left to
the reader. Therefore, M = N, so ¢ is a homomorphism of G onto G'/N'
with kernel N, whence, by the First Homomorphism Theorem, G/N = G'/N’.

Finally, again by Theorems 2.7.1 and 2.7.2, G’ = G/K, N' = N/K, which
leads us to G/N = G'/IN' = (G/K)/(NIK). []

This last equality is highly suggestive; we are sort of “canceling out” the
K in the numerator and denominator.

PROBLEMS

1. Show that M D N in the proof of Theorem 2.7.3.

2. Let G be the group of all real-valued functions on the unit interval [0, 1],
where we define, for f, g € G, addition by (f + g)(x) = f(x) + g(x) for
every x € [0, 1. If N = {f € G| f(z) = 0}, prove that G/N = real num-
bers under +.

3. Let G be the group of nonzero real numbers under multiplication and let
N = {1, —1}. Prove that G/N = positive real numbers under multiplication.

4. If G, G, are two groups and G = G; X G, = {(a, b)|a € G, b € G,},
where we define (a, b)(c, d) = (ac, bd), show that:
(@) N ={(a, e,)|a € G}, where e, is the unit element of G,, is a normal
subgroup of G.
() N=G,.
(©) GIN=G,.
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5. Let G be a group, H a subgroup of G, and N < G. Let the set HN =

{hn|h € H,n € N}. Prove that:
(a) HNh N<H.
(b) HN is a subgroup of G.
(¢) NC HN and N < HN.
(d) (HN)/N = H/(H N N).

*6. If G is a group and N < G, show that if a € G has finite order o(a), then
Na in G/N has finite order m, where m | o(a). (Prove this by using the
homomorphism of G onto G/N.)

7. If ¢ is a homomorphism of G onto G’ and N <1 G, show that ¢ (N) < G'.

8. CAUCHY'’S THEOREM

In Theorem 2.6.4—Cauchy’s Theorem—we proved that if a prime p divides
the order of a finite abelian group G, then G contains an element of order p.
We did point out there that Cauchy’s Theorem is true even if the group is not
abelian. We shall give a very neat proof of this here; this proof is due to
McKay.

We return for a moment to set theory, doing something that we men-
tioned in the problems in Section 4.

Let S be a set, f € A(S), and define a relation on § as follows: s ~ ¢ if
t = f'(s) for some integer i (i can be positive, negative, or zero). We leave it
to the reader as a problem that this does indeed define an equivalence rela-
tion on S. The equivalence class of s, [s], is called the orbit of s under f. So §
is the disjoint union of the orbits of its elements.

When fis of order p, p a prime, we can say something about the size of
the orbits under f; those of the readers who solved Problem 34 of Section 4
already know the result. We prove it here to put it on the record officially.

[If f* (s) = s, of course f*(s) = s for every integer ¢. (Prove!)]

Lemma 2.8.1. If f € A(S) is of order p, p a prime, then the orbit of
any element of S under f has 1 or p elements.

Proof. Lets € S;if f(s) = s, then the orbit of s under f consists merely
of s itself, so has one element. Suppose then that f(s) # s. Consider the ele-
ments s, f(s), f>(s), ..., f?~!(s); we claim that these p elements are distinct
and constitute the orbit of s under f. If not, then fi(s) = f/(s) for some
0 <i<j=p — 1, which gives us that f/~/(s) = 5. Let m = j — i; then
0<m=p-—1andf"(s) =s. But f7(s) = s and since p/ m, ap + bm = 1 for
some integers a and b. Thus f!(s) = f7*"(s) = fo2(fo"(s)) = f**(s) = s,
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since f™(s) = fP(s) = s. This contradicts that f(s) # s. Thus the orbit of s
under f consists of s, f(s), f(s), ..., f? ~*(s), so as p elements. (]

We now give McKay’s proof of Cauchy’s Theorem.

Theorem 2.8.2 (Cauchy). If p is a prime and p divides the order of G,
then G contains an element of order p.

Proof. If p = 2, the result amounts to Problem 18 in Section 1. Assume
that p # 2. Let S be the set of all ordered p-tuples (a;, a,, ..., a, 4, a,), where
a,, a,...,a,are in G and where a,a, - - - a,_,a, = e. We claim that S has n”™"
elements where n = |G|. Why? We can choose a4y, ..., a,_; arbitrarily in G,
and by putting a, = (a,a, - - - a,,) ", the p-tuple (a;, a,, . .., a,_,, a,) then satisfies

.. = e ... -1 —
aa, - a, ,a, = a,a, a,_(a,a, a, )" =e,
P

so is in S. Thus S has n” "' elements.

Note that if a;a, - - - a,_,a, = e, then a,aia, - - - a,_; = e (forif xy = e in
a group, then yx = e). So the mapping f: S — § defined by f(ay, ..., a,) =
(a,,a,,a,,...,a,_1)isin A(S). Note that f # i, the identity map on S, and
that f? = i, so fis of order p.

If the orbit of s under f has one element, then f(s) = s. On the other
hand, if f(s) # s, we know that the orbit of s under f consists precisely of p
distinct elements; this we have by Lemma 2.8.1. Now when is f(s) # s? We
claim that f(s) # s if and only if when s = (ay, a,, ..., a,), then for some
i # j,a; # a;. (We leave this to the reader.) So f(s) = s if and only if s =
(a,a,...,a)forsomea € G.

Let m be the number of s € § such that f(s) = s; since for s =
(e, e,...,e), f(s) =s, we know that m = 1. On the other hand, if f(s) # s,
the orbit of s consists of p elements, and these orbits are disjoint, for they are
equivalence classes. If there are k such orbits where f(s) # s, we get that
n?~! = m + kp, for we have accounted this way for every element of S.

But p | n by assumption and p | (kp). So we must have p | m, since m =
n?~! — kp. Because m # 0 and p | m, we get that m > 1. But this says that
thereisans = (a,a,...,a) # (e, e, ..., e) in S; from the definition of S this
implies that a” = e. Since a # e, a is the required element of order p. []

Note that the proof tells us that the number of solutions in G of x” = e
is a positive multiple of p.

We strongly urge the reader who feels uncomfortable with the proof
just given to carry out its details for p = 3. In this case the action of fon §
becomes clear and our assertions about this action can be checked explicitly.
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Cauchy’s Theorem has many consequences. We shall present one of
these, in which we determine completely the nature of certain groups of
order pq, where p and g are distinct primes. Other consequences will be
found in the problem set to follow, and in later material on groups.

Lemma 2.8.3. Let G be a group of order pgq, where p, g are primes
and p > q. If a € G is of order p and A is the subgroup of G generated by a,
then A < G.

Proof. We claim that A is the only subgroup of G of order p. Suppose
that B is another subgroup of order p. Consider the set AB =
[xy|x € A, y € B); we claim that AB has p? distinct elements. For suppose
that xy = uv where x, u € A, y, v € B; then u 'x = vy . But u” lx € A,
vy ! € B, and since u”'x = vy~ !, we have u”'x € A N B. Since B # A and
A N B is asubgroup of A and A is of prime order, we are forced to conclude
that A N B = (e) and so u™ 'x = e, that is, u = x. Similarly, v = y. Thus the
number of distinct elements in AB is p2. But all these elements are in G,
which has only pg < p? elements (since p > gq). With this contradiction we
see that B = A and A is the only subgroup of order p in G. Butif x € G, B =
x 'Ax is a subgroup of G of order p, in consequence of which we conclude
that x 'Ax = A;hence A < G. []

Corollary. If G, a are as in Lemma 283 and if x € G, then
x lax = a', where 0 < i < p, for some i (depending on x).

Proof. Since e # a € A andx 'Ax = A, x 'ax € A. But every element
of A is of the form a’, 0 = i < p, and x " 'ax # e. In consquence, x " 'ax = a,
where 0 < i <p.[]

We now prove a result of a different flavor.

Lemma 28.4. Ifa € G is of order m and b € G is of order n, where
m and n are relatively prime and ab = ba, then ¢ = ab is of order mn.

Proof. Suppose that A is the subgroup generated by a and B that gener-
ated by b. Because |A| = m and |B| = nand (m, n) = 1, we get A N B = (e),
which follows from Lagrange’s Theorem, for |[A N B| |n and |A N B| | m.

Suppose that ¢’ = e, where i > 0; thus (ab)’ = e. Since ab = ba, e =
(ab)' = a'b'; this tells us that a’ = b€ A N B = (e). So a’' = e, whence m | i,
and b’ = e, whence n | i. Because (m, n) = 1 and m and n both divide i, mn
divides i. So i = mn. Since (ab)™ = a™"b™ = e, we see that mn is the small-
est positive integer i such that (ab)’ = e. This says that ab is of order mn, as
claimed in the lemma. []
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Before considering the more general case of groups of order pg, let’s
look at a special case, namely, a group G of order 15. By Cauchy’s Theorem,
G has elements b of order 3 and a of order 5. By the Corollary to Lemma
2.83, b7 lab = a', where 0 < i < 5. Thus

b~%ab®> = b~™'(b”'ab)b = b~'a’b = (b”'ab) = (d')' = a”

and similarly, b~ 3ab® = a'’. But b*> = e, so we get a’” = a, whence a’> ' = e.

Since a is of order 5, 5 must divide i* — 1, that is, i> = 1(5). However, by Fer-
mat’s Theorem (Corollary to Theorem 2.4.8), i* = 1(5). These two equations
for i tell us that i = 1(5), so, since 0 < i < 5,i = 1. In short, b lab = a' = a,
which means that ab = ba. Since a is of order 5 and b of order 3, by Lemma
2.8.4, c = ab is of order 15. This means that the 15 powerse = ¢°, ¢, ¢*, . . .,
c'* are distinct, so must sweep out all of G. In a word, G must be cyclic.

The argument given for 15 could have been made shorter, but the form
in which we did it is the exact prototype for the proof of the more general

Theorem 2.8.5. Let G be a group of order pq, where p, g are primes
and p > q.If ¢/ p — 1, then G must be cyclic.

Proof. By Cauchy’s Theorem, G has an element a of order p and an
element b of order g. By the Corollary to Lemma 2.8.3, b~ lab = a’ for some i
with 0 < i < p. Thus b~ "ab” = a'’ for all r = 0 (Prove!), and so b~ %ab? = a'’.
But b? = e; therefore, a’’ = a and so a’*~! = e. Because a is of order p, we
conclude that p | i — 1, which is to say, i? = 1(p). However, by Fermat’s
Theorem, i? ! = 1(p). Since g {/p — 1, we conclude that i = 1(p), and since
0 <i < p,i=1follows. Therefore, b~lab = a' = a, hence ab = ba. By
Lemma 2.8.4, ¢ = ab has order pgq, so the powers of ¢ sweep out all of G.
Thus G is cyclic, and the theorem is proved. []

PROBLEMS
Middle-Level Problems

1. In the proof of Theorem 2.8.2, show that if some two entries in s =
(a4, ay, ... , a,) are different, then f(s) # s, and the orbit of s under f
has p elements.

2. Prove that a group of order 35 is cyclic.

3. Using the result of Problem 40 of Section 5, give another proof of
Lemma 2.8.3. (Hint: Use for H a subgroup of order p.)

4. Construct a nonabelian group of order 21. (Hint: Assume that a’ = e,
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b’ = e and find some i such that a~'ba = a' # a, which is consistent with
the relations a® = b’ = e.)

5. Let G be a group of order p"m, where p is prime and p | m. Suppose that
G has a normal subgroup P of order p". Prove that 6(P) = P for every
automorphism 6 of G.

6. Let G be a finite group with subgroups A, B such that |A| > V|G| and
|B| > V/|G|. Prove that A N B # (e).

7. If G is a group with subgroups A, B of orders m, n, respectively, where
m and n are relatively prime, prove that the subset of G,
AB = {ab|a € A, b € B}, has mn distinct elements.

8. Prove that a group of order 99 has a nontrivial normal subgroup.

9. Prove that a group of order 42 has a nontrivial normal subgroup.

10. From the result of Problem 9, prove that a group of order 42 has a nor-
mal subgroup of order 21.

Harder Problems

11. If G 1s a group and A, B finite subgroups of G, prove that the set AB =
labla € A, b € B} has (JA| |B|)/|A N B| distinct elements.

12. Prove that any two nonabelian groups of order 21 are isomorphic. (See
Problem 4.)

Very Hard Problems

13. Using the fact that any group of order 9 is abelian, prove that any group
of order 99 is abelian.

14. Let p > q be two primes such that g | p — 1. Prove that there exists a
nonabelian group of order pq. (Hint: Use the result of Problem 40 of
Section 4, namely that U, is cyclic if p is a prime, and the idea needed to
do Problem 4 above.)

15. Prove that if p > g are two primes such that g | p — 1, then any two non-
abelian groups of order pq are isomorphic.

9. DIRECT PRODUCTS

In several of the problems and examples that appeared earlier, we went
through the following construction: If G, G, are two groups, then G =
G, X G, is the set of all ordered pairs (a, b), where a € G, and b € G, and
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where the product was defined component-wise via (a;, b\)(a,, b,) =
(aya,, by b,), the products in each component being carried out in the respec-
tive groups G, and G,. We should like to formalize this procedure here.

Definition. If G, G,, ..., G, are n groups, then their (external) di-
rect product G; X G, X G3 X --- X G, is the set of all ordered n-tuples
(ay, ay,...,a,) wherea; € G;,fori =1,2,..., n, and where the product in

G X G, X -+ X G, is defined component-wise, that is,
(ay,a,,...,a,)(by, by, ..., b,) = (a1by,a5b,,...,a,b,).

That G = G; X G, X --- X G, is a group is immediate, with
(eq, €5, ..., €e,) as its unit element, where e; is the unit element of G;, and
where (a;, a,,...,a,) ' =(a; a7, ..., a0, ).

G is merely the Cartesian product of the groups G, G,, ..., G, with a
product defined in G by component-wise multiplication. We call it external,
since the groups G, G,, ..., G, are any groups, with no relation necessarily
holding among them.

Consider the subsets G, C G, X G, X - -+ X G, = G, where

G, ={(e,...,e,_1,8;,€;11,-.-,€,) ] a, € G;};

in other words, G, consists of all n-tuples where in the ith component any el-
ement of G; can occur and where every other component is the identity ele-
ment. Clearly, G; is a group and is isomorphic to G; by the isomorphism

m;: G; = G, defined by m;(e;, e,,..., a;,..., e,) = a;. Furthermore, not
only is G; a subgroup of G but G; < G. (Prove!)
Given any element a = (a,, a,,...,a,) € G, then
a=(a,e,...,e,)(e,a,€e5,...,¢e,) (e, e,...,e,1,4a,);

that is, every @ € G can be written as a = @,a, - - - a,, where each g, € G,.
Moreover, a can be written in this way in a unique manner, that is, if a =
aa, -+d, =bb, -+b,, where the a,€G, and b,€G,, then
a, =by...,a,=Db,. So G is built up from certain normal subgroups, the
G, as G = G,G,- -G, in such a way that every element a € G has a
unique representation in the forma = aa, - - - a, with g; € G,.

This motivates the following

Definition. The group G is said to be the (internal) direct product of
its normal subgroups N, N,, ..., N, if every a € G has a unique representa-
tion in the form a = a,a, - - - a,, where eachq, € N, fori = 1,2,..., n.

From what we have discussed above we have the
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Lemma 29.1. If G = G, X G, X -+ X G, is the external direct prod-
uct of G, G,, ..., G,, then G is the internal direct product of the normal
subgroups G,, G,, . . ., G, defined above.

We want to go in the other direction, namely to prove that if G is the in-
ternal direct product of its normal subgroups N, N,, ..., N,, then G is iso-
morphic to Ny X N, X --- X N,.. To do so, we first get some preliminary results.

The result we are about to prove has already occurred as Problem 20,
Section 5. For the sake of completeness we prove it here.

Lemma 2.9.2. Let G be a group, M, N normal subgroups of G such
that M N N = (e). Then, givenm € M and n € N, mn = nm.

Proof. Consider the element a = mnm~'n"!. Viewing a as bracketed

one way, a = (mnm~")n"!; then, since N <\ G and n € N, mnm~! € N, so
a = (mnm ")n"lis also in N. Now bracket a in the other way, a = m(nm™'n").
Since M < G and m™! € M, we have nm 'n"! € M and so a =
m(nm~'n"') € M. Thus a € M N N = (e), which is to say, mnm ™ 'n"! = e.
This gives us that mn = nm, as required. []

If G is the internal direct product of the normal subgroups N,
N,,..., N,, we claim that N; N N, = (e) for i # j. For suppose that
a€ N;N N;;thena =e-e--- eae - e, where the a occurs in the ith place.
This gives us one representation of a in G = N| N, - -+ N,. On the other hand,
a=e-e---e-a-e-- e where the a occurs in the jth place, so a has the second
representation as an element of N,N, - -- N, . By the uniqueness of the repre-
sentation, we geta = e, andso N; N N, = (e).

Perhaps things would be clearer if we do it for n = 2. So suppose that
N, < G, N, < G, and every element a € G has a unique representation as
a=a,-a,, where a; € N, a, € N,. Suppose thata € N, N N,; thena =
a - e is a representation of a = a, - a, witha; =a € N,,a, = e € N,. How-
evera = e -a,soa = b, - b,, where by = e € N, b, = a € N,. By the
uniqueness of the representation we must have a; = b, that is, a = e.
SoN; N N, = (e).

The argument given above for Ny, ..., N, is the same argument as that
given for n = 2, but perhaps is less transparent. At any rate we have proved

Lemma 2.9.3. If G is the internal direct product of its normal sub-
groups Ny, N,, ..., N,, then, fori # j, N;N N, = (e).

Corollary. If G is as in Lemma 2.9.3, then if i # j and a; € N, and
a; € N;, we have a;a; = a;a;.
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Proof. By Lemma 2.9.3, N; N N; = (e) for i # j. Since the N’s are nor-
mal in G, by Lemma 2.9.2 we have that any element in N; commutes with any
element in N, that is, a;a; = a;a;fora; € N;,a; € N;. []

With these preliminaries out of the way we can now prove

Theorem 2.9.4. Let G be a group with normal subgroups N, N,, ...,
N,. Then the mapping ¢ (a;, a,,..., a,) = a,a, --- a, is an isomorphism
from N; X N, X - -+ X N, (external direct product) onto G if and only if G is
the internal direct product of N, N,,..., N,.

Proof. Suppose G is an internal direct product of Ny,..., N,. Since
every element a in G has a representation a = aa, - - - a,, with the a; € N;,
we have that the mapping ¢ is onto. We assert that it is also 1-1. For if

v((ay, ay,..., a,)) = ¥((by, by,..., b,)), then by the definition of i,
a,a, - a, = bb,--- b,. By the uniqueness of the representation of an ele-
ment in this form we deduce that ¢, = b;,a, = b,, ... ,a, = b,. Hence ¢ is 1-1.

All that remains is to show that ¢ is a homomorphism. So, consider

lp((al, az, ..., an)(bl’ b2a R bn)) = w((albl, a2b23 R anbn))
= (a:b1)(azbs) - - - (a,b,)

= alblazbz c v anbn.

Since b, € N,, it commutes with a;, b, for i > 1 by the Corollary to Lemma
2.9.3. So we can pull the b, across all the elements to the right of it to get
a,ba,b,---a,b, = aia,basbs - - - a,b,b;. Now repeat this procedure with b,,
and so on, to get that a,b,a,b, - a,b, = (a1a, - a,)(b1b, - b,). Thus

v((ay, ay,...,a,)(by, by, ..., b)) = abarb,---a,b,
= (a2, - - a,)(byby - - b))

= lp((ala a25 L) an))w((blea c vy bn))

In other words, ¢ is a homomorphism.

On the other hand, suppose that ¢ is an isomorphism. Then the conclu-
sion that G is the internal direct product of N, N,,..., N, easily follows
from the fact that s is onto and 1-1.

With this the proof of Theorem 2.9.4 is complete. []

Corollary. Let G be a group with normal subgroups N, N,. Then G
is the internal direct product of N; and N, if and only if G = N;N, and
N, N N, = (e).



96 Groups Ch. 2

Proof. This follows easily from the fact that ¢: N; X N, — G, which is
given by ¢ (a,, a,) = aja,, is an isomorphism if and only if NN, = G and
Nl N N2 = (e). D

In view of the result of Theorem 2.9.4 and its corollary, we drop the ad-
jectives “internal” and “external” and merely speak about the “direct prod-
uct.” When notation G = N; X N, is used it should be clear from context
whether it stands for the internal or external direct product.

The objective is often to show that a given group is the direct product
of certain normal subgroups. If one can do this, the structure of the group
can be completely determined if we happen to know those of the normal
subgroups.

PROBLEMS

1. If G, and G, are groups, prove that G; X G, = G, X G;.

2. If G, and G, are cyclic groups of orders m and n, respectively, prove that
G, X G, is cyclic if and only if m and » are relatively prime.

3. Let Gbeagroup A=G X G.InAletT={(g g)|g € G}.

(a) Prove that T = G.
(b) Prove that 7<J A if and only if G is abelian.

4. Let G be an abelian group of order p7'ip5=- - - ¥k, where pq, ps, ..., Dk
are distinct primes and m; > 0, m, > 0, ..., m; > 0. By Problem 10 of
Section 6, for each i, G has a subgroup P; of order p/. Show that
G=P XP, X X Py.

5. Let G be a finite group, Ny, N,, ..., N, normal subgroups of G such that
G = N\N,--- N, and |G| = |N,| |N;| - - - |N,|. Prove that G is the direct
product of Ny, N,, ..., N,.

6. Let G be a group, N, N,, ..., N, normal subgroups of G such that:

1. G=N|N,---N,.
2. Foreachi, NN (NN, N;_{N;,1--- N, = (e).
Prove that G is the direct product of N, N,, ..., N,.

10. FINITE ABELIAN GROUPS (OPTIONAL)

We have just finished discussing the idea of the direct product of groups. If
we were to leave that topic at the point where we ended, it might seem like
a nice little construction, but so what? To give some more substance to it,
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we should prove at least one theorem which says that a group satisfying a
certain condition is the direct product of some particularly easy groups. For-
tunately, such a class of groups exists, the finite abelian groups. What we
shall prove is that any finite abelian group is the direct product of cyclic
groups. This reduces most questions about finite abelian groups to questions
about cyclic groups, a reduction that often allows us to get complete an-
swers to these questions.

The results on the structure of finite abelian groups are really special
cases of some wider and deeper theorems. To consider these would be going
too far afield, especially since the story for finite abelian groups is so impor-
tant in its own right. The theorem we shall prove is called the Fundamental
Theorem on Finite Abelian Groups, and rightfully so.

Before getting down to the actual details of the proof, we should like to
give a quick sketch of how we shall go about proving the theorem.

Our first step will be to reduce the problem from any finite abelian
group to one whose order is p”, where p is a prime. This step will be fairly
easy to carry out, and since the group will have order involving just one
prime, the details of the proof will not be cluttered with elements whose or-
ders are somewhat complicated.

So we shall focus on groups of order p”. Let G be an abelian group of
order p”. We want to show that there exist cyclic subgroups of G, namely
Ay, Ay, ..., A, such that every element x € G can be written as x =
b.b, - b,, where each b; € A;, in a unique way. Otherwise put, since
each A, is cyclic and generated by a;, say, we want to show that x =
alay? - - - ay'*, where the elements a/*/ are unique.

A difficulty appears right away, for there is not just one choice for these
elements a,, ..., a,. For instance, if G is the abelian group of order 4 with
elements e, a, b, ab, where a* = b*> = e and ab = ba, then we can see that if
A, B, C are the cyclic subgroups generated by a, b, and ab, respectively, then
G=AXB=AXC= B X C.So there is a lack of uniqueness in the choice of
the a,. How to get around this?

What we need is a mechanism for picking a; and which, when applied
after we have picked a;, will allow us to pick a,, and so on. What should this
mechanism be? Our control on the elements of G lies only in specifying their
orders. It is the order of the element—when properly used—that will give us
the means to prove the theorem.

Suppose that G = A; X A, X -+ X A,, where |G| = p" and the A’s
have been numbered, so that |A;| = p"and n;, 2 n, = - - - = n,, and each A,
is cyclic generated by a;. If this were so and x = a7'! - - - a4, then

pt — my ., ., gmE\P" — gmyptt moptl o omyphtl
X (af ag) = a7t ay? a“
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because n, = n;, p™i| p™1, so since every a"*" = e, thus x?"' = e. In other
words, a, should be an element of G whose order is as large as it can possibly
be. Fine, we can now pick a;. What do we do for a,? If G = G/A,, then to
get the first element needed to represent G as a direct product of cyclic
groups, we should pick an element in G whose order is maximal. What does
this translate into in G itself? We want an element a, such that a, requires as
high a power as possible to fall into A,. So that will be the road to the selec-
tion of the second element. However, if we pick an element a, with this
property, it may not do the trick; we may have to adapt it so that it will. The
doing of all this is the technical part of the argument and does go through.
Then one repeats it appropriately to find an element a5, and so on.

This is the procedure we shall be going through to prove the theorem.
But to smooth out these successive choices of a;, a,, ..., we shall use an in-
duction argument and some subsidiary preliminary results.

With this sketch as guide we hope the proof of the theorem will make
sense to the reader. One should not confuse the basic idea in the proof—
which is quite reasonable—with the technical details, which may cloud the
issue. So we now begin to fill in the details of the sketch of the proof that we
outlined above.

Lemma 2.10.1. Let G be a finite abelian group of order mn, where m
and n are relatively prime. f M = {x E G|x" = e}and N = {x € G | x" = e},
then G = M X N. Moreover, if neither m nor n is 1, then M # (e) and N # (e).

Proof. The sets M and N defined in the assertion above are quickly
seen to be subgroups of G. Moreover, if m # 1, then by Cauchy’s Theorem
(Theorem 2.6.4) we readily obtain M # (e), and similarly if n # 1, that
N # (e). Furthermore, since M N N is a subgroup of both M and N, by La-
grange’s Theorem, |M N N| divides |M| = m and |N| = n. Because m and n
are relatively prime, we obtain [M N N| =1, hence M N N = (e).

To finish the proof, we need to show that G = MN and G = M X N.
Since m and n are relatively prime, there exist integers r and s such that
rm + sn =1.If a € G, then a = a' = a*"*"™ = a*"a’™; since (a*")" =
a’"m = e, we have that a*” € M. Similarly, a”™ € N. Thus a = a’"a"™ is in
MN. In this way G = MN. It now follows from Corollary to Theorem 2.9.4
that G = M X N.[]

An immediate consequence is the

Corollary. Let G be a finite abelian group and let p be a prime such
that p divides |G|. Then G = P X T for some subgroups P and 7, where
|P| = p™ m > 0, and |T| is not divisible by p.
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Proof Let P = {x € G|x”’ = e for some s} and let the subset
T = {x € G| x' = e for t relatively prime to p}. By Lemma 2.10.1, G=P X T
and P # (e). Since every element in P has order a power of p, | P| is not divis-
ible by any other prime (by Cauchy’s Theorem), so | P| = p™ for some m.

It is easy to see that p /| T'| by making use of Lagrange’s Theorem. Thus
we really have that P is not merely some subgroup of G but is what is called
a p-Sylow subgroup of G. (See Section 11). []

We now come to the key step in the proof of the theorem we seek.
The proof is a little difficult, but once we have this result the rest will be
easy.

Theorem 2.10.2. Let G be an abelian group of order p”, p a prime,
and let a € G have maximal order of all the elements in G. Then G =
A X Q, where A i1s the cyclic subgroup generated by a.

Proof. We proceed by induction on n. If n = 1, then |G| = p and G is
already a cyclic group generated by any a # e in G.

We suppose the theorem to be true for all m < n. We first show that
the theorem is correct if there exists an element b € G such that b € A = (a)
and b? = e. Let B = (b), the subgroup of G generated by b; thus
A N B = (e) (see Problem 1).

Let G = G/B; by assumption B # (e), hence |G| < |G|. In G, what is
the order of @ = Ba? We claim that o(a) = o(a). To begin with, we know
that 0(a) | o(a) (see Problem 6 of Section 2.7). On the other hand, a°’) = g,
s0 a°@ € B. Since a°® € A, we see that a°® € A N B = (e), whence
a®@ = e. This tells us that o(a) | o(@). Hence o(a) = o(a).

Since a is an element of maximal order in G, by the induction we know
that G = (@) X T for some subgroup T of G. By the Correspondence
Theorem we also know that 7" = Q/B for some subgroup Q of G. We claim
that G is the internal direct product A X Q. That G = AQ is left to
the reader. It remains to show that A N Q = (e). Let a' € A N Q. Then
a' € Q/B = T, and since (a) N T = (&), we have that @’ = €. But since o(a) =
o(@), this implies a' = e. Therefore, A N Q = (e) and we obtain that
G=AXQ.

Suppose, then, that there is no element b in G, b not in A, such that
b? = e. We claim that this forces G = A = (a), in which case G is a cyclic
group. Suppose that G # A and let x € G, x &€ A have smallest possible
order. Because o(x?) < o(x), we have, by our choice of x, that x” € A, hence
x? = a' for some i.

We claim that p|i. Let o(a) = p°®, and note that the maximality
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of the order of a implies that x”° = e. But x?* = (x?)?"' = (a’)?"' = e. Since
o(a) = p*, we have p | i.

Thus x” = a’, where p |i. Lety =a "7 -x. Theny? =a x» =a ‘a’ = e.
Moreover, y & (a) = A, because x & A. But this puts us back in the situation
discussed above, where there exists a b € G, b &€ A such that b” = ¢; in that
case we saw that the theorem was correct. So we must have G = (a), and G
is a cyclic group. This finishes the induction and proves the theorem. []

We are now able to prove the very basic and important

Theorem 2.10.3 (Fundamental Theorem on Finite Abelian Groups).
A finite abelian group is the direct product of cyclic groups.

Proof. Let G be a finite abelian group and p a prime that divides |G|.
By the Corollary to Lemma 2.10.1, G = P X T, where |P| = p”. By Theorem
2102, P =A; X A, X --- X A;, where the A, are cyclic subgroups of P. Ar-
guing by induction on |G|, we may thus assume that T = T, X T, X - - - X T,,
where the T; are cyclic subgroups of 7. Thus

G=A XA, X - XA)X (T} XT, X -+ XT,))
=A; XA, X - XAXT XT,X---XT,
This very important theorem is now proved. []

We return to abelian groups G of order p". We now have at hand that
G=A, XA, X - X A,, where the A, are cyclic groups of order p™. We
can arrange the numbering so that n, = n, = --- = n,. Also, |G| =
|A; X A, X --- X A, | =|A4| |A,] - - - |A,|, which gives us that

nitny+--tn,

pnzpnlan-.-pnkzp ,

hence n = n; + n, + - -- + n,. Thus the integers n; = 0 give us a partition of
n. It can be shown that these integers n,, n,, ..., n,—which are called the
invariants of G—are unique. In other words, two abelian groups of order p”
are isomorphic if and only if they have the same invariants. Granted this, it
follows that the number of nonisomorphic abelian groups of order p” is equal
to the number of partitions of n.

For example, if n = 3, it has the following three partitions: 3 = 3,3 =
2+ 1,3=1+1 + 1, so there are three nonisomorphic abelian groups of
order p? (independent of p). The groups corresponding to these partitions
are a cyclic group of order p?, the direct product of a cyclic group of order p?
by one of order p, and the direct product of three cyclic groups of order p,
respectively.



Sec. 11 Conjugacy and Sylow’s Theorem (Optional) 101

For n = 4 we see the partitionsare 4 = 4,4 =3 + 1,4 =2 + 2,4 =
2+1+1,4=1+1+1+ 1, which are five in number. Thus there are five
nonisomorphic groups of order p*. Can you describe them via the partitions
of 47

Given an abelian group of order n = p{ip5?- - - pik, where the p; are
distinct primes and the a; are all positive, then G is the direct product of its
so-called p;— Sylow subgroups (see, e.g., the Corollary to Lemma 2.10.1). For
each prime p; there are as many groups of order p{‘ as there are partitions of
a;. So the number of nonisomorphic abelian groups of order n = p{* - - - pg
is f(a,)f(ay) - - f(a;), where f(m) denotes the number of partitions of m.
Thus we know how many nonisomorphic finite abelian groups there are for
any given order.

For instance, how many nonisomorphic abelian groups are there of
order 144? Since 144 = 2*32, and there are five partitions of 4, two partitions
of 2, there are 10 nonisomorphic abelian groups of order 144.

The material treated in this section has been hard, the path somewhat
tortuous, and the effort to understand quite intense. To spare the reader too
much further agony, we assign only three problems to this section.

PROBLEMS

1. Let A be a notrinal subgroup of a group G, and suppose that b € G is an
element of prime order p, and that b & A. Show that A N (b) = (e).

2. Let G be an abelian group of order p”, p a prime, and let a € G have max-
imal order. Show that x°®@ = e for all x € G.

3. Let G be a finite group, with N < G and a € G. Prove that:
(a) The order of aN in G/N divides the order of a in G, that is,
o(aN) | o(a).
(b) If (a) N N = (e), then o(aN) = o(a).

11. CONJUGACY AND SYLOW'’S THEOREM (OPTIONAL)

In discussitig equivalence relations in Section 4 we mentioned, as an example
of such a relation in a group G, the notion of conjugacy. Recall that the ele-
ment b in G is said to be conjugate to a € G (or merely, a conjugate of a) if
there exists an x € G such that b = x 'ax. We showed in Section 4 that this
defines an equivalence relation on G. The equivalence class of a, which we
denote by cl(a), is called the conjugacy class of a.
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For a finite group an immediate question presents itself: How large is
cl(a)? Of course, this depends strongly on the element a. For instance, if
a € Z(G), the center of G, then ax = xa for all x € G, hence x 'ax = a; in
other words, the conjugacy class of a in this case consists merely of the ele-
ment a itself. On the other hand, if cl(a) consists only of the element a, then
x 'ax = a for all x € G. This gives us that xa = ax for all x € G, hence
a € Z(G). So Z(G) is characterized as the set of those elements a in G
whose conjugacy class has only one element, a itself.

For an abelian group G, since G = Z(G), two elements are conjugate if
and only if they are equal. So conjugacy is not an interesting relation for
abelian groups; however, for nonabelian groups it is a highly interesting no-
tion.

Given a € G, cl(a) consists of all x 'ax as x runs over G. So to deter-
mine which are the distinct conjugates of a, we need to know when two con-
jugates of a coincide, which is the same as asking: When is x ~lax = y~!ay? In
this case, transposing, we obtain a(xy !) = (xy ')a; in other words, xy™!
must commute with a. This brings us to a concept introduced as Example 10
in Section 3, that of the centralizer of a in G. We repeat something we did
there.

Definition. If a € G, then C(a), the centralizer of a in G, is defined
by C(a) = {x € G | xa = ax}.

When C(a) arose in Section 3 we showed that it was a subgroup of G.
We record this now more officially as

Lemma 2.11.1. Fora € G, C(a) is a subgroup of G.

As we saw above, the two conjugates x 'ax and y~'ay of a are equal
only if xy~! € C(a), that is, only if x and y are in the same right coset of C(a)
in G. On the other hand, if x and y are in the same right coset of C(a) in G,
then xy~! € C(a), hence xy~'a = axy™'. This yields that x " 'ax = y~'ay. So x
and y give rise to the same conjugate of a if and only if x and y are in the
same right coset of C(a) in G. Thus there are as many conjugates of a in G as
there are right cosets of C(a) in G. This is most interesting when G is a finite
group, for in that case the number of right cosets of C(a) in G is what we
called the index, i;(C(a)), of C(a) in G, and is equal to |G|/ |C(a)|.

We have proved

Theorem 2.11.2. Let G be a finite group and a € G; then the number
of distinct conjugates of a in G equals the index of C(a) in G.
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In other words, the number of elements in cl(a) equals i;(C(a)) =
|Gl/|C(a)].

This theorem, although it was relatively easy to prove, is very impor-
tant and has many consequences. We shall see a few of these here.

One such consequence is a kind of bookkeeping result. Since conjugacy
is an equivalence relation on G, G is the union of the disjoint conjugacy
classes. Moreover, by Theorem 2.11.2, we know how many elements there
are in each class. Putting all this information together, we get

Theorem 2.11.3 (The Class Equation). If G is a finite group, then

Gl = Sig(c@) = S

where the sum runs over one a from each conjugacy class.

It is almost a sacred tradition among mathematicians to give, as the first
application of the class equation, a particular theorem about groups of order
p", where p is a prime. Not wanting to be accused of heresy, we follow this
tradition and prove the pretty and important

Theorem 2.11.4. If G is a group of order p”, where p is a prime, then
Z(G), the center of G, is not trivial (i.e., there exists an element a # e in G
such that ax = xa for all x € G).

Proof. We shall exploit the class equation to carry out the proof. Let
z = | Z(G)|; as we pointed out previously, z is then the number of elements
in G whose conjugacy class has only one element. Since e € Z(G), z = 1.
For any element b outside Z(G), its conjugacy class contains more than one
element and |C(b)| < |G|. Moreover, since |C(b)| divides |G| by Lagrange’s
theorem, |C(b)| = p"®, where 1 = n(b) < n. We divide the pieces of the
class equation into two parts: that coming from the center, and the rest. We
get, this way,

G " n—n

b&Z(G) nb)<n nb)<n
Clearly, p divides the left-hand side, p”, and divides =, ,,~,p"" "®). The net
result of this is that p | z, and since z = 1, we have that z is af least p. So since
z = |Z(G)|, there must be an element a # e in Z(G), which proves the theo-
rem. []

This last theorem has an interesting application, which some readers
may have seen in solving Problem 45 of Section 5. This is
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Theorem 2.11.5. If G is a group of order p? where p is a prime, then
G is abelian.

Proof. By Theorem 2.11.4, Z(G) # (e), so that there is an element, a,
of order p in Z(G). If A = (a), the subgroup generated by a, then A C Z(G),
hence A C C(x) for all x € G. Given x € G, x & A, then C(x) D A and
x € C(x); so |C(x)| > p, yet |C(x)| must divide p>. The net result of this is
that |C(x)| = p?% so C(x) = G, whence x € Z(G). Since every element of G
is in the center of G, G must be abelian. []

In the problems to come we shall give many applications of the nature
of groups of order p”, where p is a prime. The natural attack on virtually all
these problems follows the lines of the argument we are about to give. We
choose one of a wide possible set of choices to illustrate this technique.

Theorem 2.11.6. If G is a group of order p”, p a prime, then G con-
tains a normal subgroup of order p"~".

Proof. We proceed by induction on n. If n = 1, then G is of order p
and (e) is the required normal subgroup of order p! ™' = p® = 1.

Suppose that we know that for some k every group of order p* has a
normal subgroup of order p*~!. Let G be of order p**!; by Theorem 2.11.4
there exists an element a of order p in Z(G), the center of G. Thus the sub-
group A = (a) generated by a is of order p and is normal in G. Consider I" =
G/A; T is a group of order |G|/|A| = p**'/p = p* by Theorem 2.6.3. Since T
has order p*, we know that I" has a normal subgroup M of order p*~'. Since
I" is a homomorphic image of G, by the Correspondence Theorem (Theorem
2.7.2) there is a normal subgroup N in G, N D A, such that N/A = M. But
then we have

k=1 _ _ _ V]
P = M| = INIA| = 5.
that is, p*~! = |N|/p, leading us to |N| = p*. Thus N is our required normal
subgroup in G of order p*. This completes the induction and so proves the
theorem. []

By far the most important application we make of the class equation is
the proof of a far-reaching theorem due to Sylow, a Norwegian mathemati-
cian, who proved it in 1871. We already showed this theorem to be true for
abelian groups. We shall now prove it for any finite group. It is impossible to
overstate the importance of Sylow’s Theorem in the study of finite groups.
Without it the subject would not get off the ground.
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Theorem 2.11.7 (Sylow’s Theorem). Suppose that G is a group of
order p"m, where p is a prime and p | m. Then G has a subgroup of order p".

Proof. If n = 0, this is trivial. We therefore assume that n = 1. Here,
again, we proceed by induction on |G|, assuming the result to be true for all
groups H such that |H| < |G]|.

Suppose that the result is false for G. Then, by our induction hypothe-
sis, p" cannot divide |H| for any subgroup H of G if H # G. In particular, if
a & Z(G), then C(a) # G, hence p"||C(a)|. Thus p divides |G|/|C(a)| =
i(C(a)) for a & Z(G).

Write down the class equation for G following the lines of the argu-
ment in Theorem 2.11.4. If z = |Z(G)|, then z = 1 and

p'm = |G| =z + D izg(C(a)).
a€Z(G)
But p|ig(C(a)) if a & Z(G), so p|Z,¢z06)ic(C(a)). Since p | p"m, we get
p | z. By Cauchy’s Theorem there is an element a of order p in Z(G). If A is
the subgroup generated by a, then |A| = p and A < G, since a € Z(G). Con-
sider I' = G/A; |[T| = |G|/|A| = p"mlp = p" 'm. Since |T'| < |G|, by our in-
duction hypothesis " has a subgroup M of order p”~!. However, by the Cor-
respondence Theorem there is a subgroup P of G such that P O A and
P/IA = M. Therefore, |P| = |M| |A| = p" 'p = p" and P is the sought-after
subgroup of G of order p”, contradicting our assumption that G had no such
subgroup. This completes the induction, and Sylow’s Theorem is established. [ ]

Actually, Sylow’s Theorem consists of three parts, of which we only
proved the first. The other two are (assuming p"m = |G|, where p | m):

1. Any two subgroups of order p” in G are conjugate; that is, if |P| =
|Q| = p" for subgroups P, Q of G, then for some x € G, Q = x~'Px.

2. The number of subgroups of order p” in G is of the form 1 + kp and di-
vides |G]|.

Since these subgroups of order p” pop up all over the place, they are
called p-Sylow subgroups of G. An abelian group has one p-Sylow subgroup
for every prime p dividing its order. This is far from true in the general case.
For instance, if G = §;, the symmetric group of degree 3, which has order 6
= 2 - 3, there are three 2-Sylow subgroups (of order 2) and one 3-Sylow sub-
group (or order 3).

For those who want to see several proofs of that part of Sylow’s Theo-
rem which we proved above, and of the other two parts, they might look at
the appropriate section of our book Topics in Algebra.
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PROBLEMS
Easier Problems

1. In S;, the symmetric group of degree 3, find all the conjugacy classes, and

check the validity of the class equation by determining the orders of the

centralizers of the elements of ;.

Do Problem 1 for G the dihedral group of order 8.

If a € G, show that C(x " lax) = x 7 'C(a)x.

If ¢ is an automorphism of G, show that C(¢(a)) = ¢(C(a)) fora € G.

If |G| = p? and |Z(G)| = p?, prove that G is abelian.

If Pis a p-Sylow subgroup of G and P < G, prove that P is the only

p-Sylow subgroup of G.

7. If P < G, P a p-Sylow subgroup of G, prove that ¢(P) = P for every
automorphism ¢ of G.

8. Use the class equation to give a proof of Cauchy’s Theorem.

If H is a subgroup of G, let N(H) = {x € G|x~'Hx = H}. This does

not mean that xa = ax whenever x € N(H), a € H. For instance, if
H < G, then N(H) = G, yet H need not be in the center of G.

9. Prove that N(H) is a subgroup of G, H C N(H) and in fact H IN(H).

10. Prove that N(x ~'Hx) = x 'N(H)x.

11. If P is a p-Sylow subgroup of G, prove that P is a p-Sylow subgroup of
N(P) and is the only p-Sylow subgroup of N(P).

12. If P is a p-Sylow subgroup and a € G is of order p™ for some m, show
that if a~'Pa = P thena € P.

13. Prove that if G is a finite group and H is a subgroup of G, then the num-
ber of distinct subgroups x ~!Hx of G equals i; (N(H)).

14. If P is a p-Sylow subgroup of G, show that the number of distinct x ~'Px
cannot be a multiple of p.

15. If N < G, let B(N) = {x € G|xa = ax for all a € N}. Prove that
B(N) <G.

DR W

Middle-Level Problems

16. Show that a group of order 36 has a normal subgroup of order 3 or 9.
(Hint: See Problem 40 of Section 5.)

17. Show that a group of order 108 has a normal subgroup of order 9 or 27.
18. If P is a p-Sylow subgroup of G, show that N(N(P)) = N(P).
19. If |G| = p", show that G has a subgroup of order p™ for all 1 = m < n.
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20. If p™ divides |G|, show that G has a subgroup of order p™.
21. If |G| = p" and H # G is a subgroup of G, show that N(H) 2 H.

22. Show that any subgroup of order p”~! in a group G of order p” is normal
in G.

Harder Problems

23. Let G be a group, H a subgroup of G. Define fora,b € G,a ~ b if b =
h~lah for some h € H. Prove that
(a) this defines an equivalence relation on G.
(b) If [a] is the equivalence class of a, show that if G is a finite group,
then [a] has m elements where m is the index of H N C(a) in H.
24. If G is a group, H a subgroup of G, define a relation B ~ A for sub-
groups A, B of G by the condition that B = h~'Ah for some h € H.
(a) Prove that this defines an equivalence relation on the set of sub-
groups of G.
(b) If G is finite, show that the number of distinct subgroups equivalent
to A equals the index of N(A) N Hin H.

25, If P is a p-Sylow subgroup of G, let S be the set of all p-Sylow subgroups

of G. For Q,, O, € S define O, ~ Q, if 0, = a~'Qa with a € P. Prove,
using this relation, that if Q # P, then the number of distinct a~'Qa, with
a € P, is a multiple of p.

26. Using the result of Problem 25, show that the number of p-Sylow sub-
groups of G is of the form 1 + kp. (This is the third part of Sylow’s Theo-
rem.)

27. Let P be a p-Sylow subgroup of G, and Q another one. Suppose that
Q # x~'Px for any x € G. Let S be the set of all y~!Qy, as y runs over G.
For Q,, Q, € Sdefine Q, ~ Q,if O, = a 'Q,a, where a € P.

(a) Show that this implies that the number of distinct y~'Qy is a multiple
of p.

(b) Using the result of Problem 14, show that the result of Part (a) can-
not hold.

(¢) Prove from this that given any two p-Sylow subgroups P and Q of G,
then Q = x~'Px for some x € G.
(This is the second part of Sylow’s Theorem.)

28. If H is a subgroup of G of order p™ show that H is contained in some
p-Sylow subgroup of G.

29. If P is a p-Sylow subgroup of G and a, b € Z(P) are conjugate in G,
prove that they are already conjugate in N(P).
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THE SYMMETRIC GROUP

1. PRELIMINARIES

Let us recall a theorem proved in Chapter 2 for abstract groups. This result,
known as Cayley’s Theorem (Theorem 2.5.1), asserts that any group G is iso-
morphic to a subgroup of A(S), the set of 1-1 mappings of the set S onto it-
self, for some suitable S. In fact, in the proof we gave we used for S the
group G itself viewed merely as a set.

Historically, groups arose this way first, long before the notion of an
abstract group was defined. We find in the work of Lagrange, Abel, Galois,
and others, results on groups of permutations proved in the late eighteenth
and early nineteenth centuries. Yet it was not until the mid-nineteenth cen-
tury that Cayley more or less introduced the abstract concept of a group.

Since the structure of isomorphic groups is the same, Cayley’s Theorem
points out a certain universal character for the groups A(S). If we knew the
structure of all subgroups of A (S) for any set S, we would know the structure
of all groups. This is much too much to expect. Nevertheless, one could try to
exploit this embedding of an arbitrary group G isomorphically into some
A(S). This has the advantage of transforming G as an abstract system into
something more concrete, namely a set of nice mappings of some set onto
itself.

We shall not be concerned with the subgroups of A(S) for an arbitrary
set S. If S is infinite, A(S) is a very wild and complicated object. Even if S is
finite, the complete nature of A (S) is virtually impossible to determine.

108
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In this chapter we consider only A (S) for S a finite set. Recall that if S
has n elements, then we call A(S) the symmetric group of degree n, and de-
note it by §,. The elements of S, are called permutations; we shall denote
them by lowercase Greek letters.

Since we multiplied two elements o, 7 € A(S) by the rule (o7)(s) =
o(7(s)) this will have the effect that when we introduce the appropri-
ate symbols to represent the elements of S,,, these symbols, or permutations,
will multiply from right to left. If the readers look at some other book on al-
gebra, they should make sure which way the permutations are being multi-
plied: right to left or left to right. Very often, algebraists multiply permuta-
tions from left to rightt To be consistent with our definition of the
composition of elements in §,,, we do it from right to left.

By Cayley’s Theorem we know that if G is a finite group of order n,
then G is isomorphic to a subgroup of S, and S, has n! elements. Speaking
loosely, we usually say that G is a subgroup of S,,. Since n is so much smaller
than n! for n even modestly large, our group occupies only a tiny little corner
in S,.. It would be desirable to embed G in an S, for n as small as possible. For
certain classes of finite groups this is achievable in a particularly nice way.

Let S be a finite set having n elements; we might as well suppose that
S = {x;, x5,..., x,}. Given the permutation ¢ € S, = A(S), then
o(x) ESfork=1,2,...,n,s0 o(x;) = x; for some i;, 1 = i, = n. Because
ois 1-1, if j # k, then x; = o(x;)) # o(x;) = x,;,. Therefore, the numbers
i1, is,...,1, are merely the numbers 1, 2, . .., n shuffled about in some order.

Clearly, the action of o on S is determined by what o does to the sub-
script j of x;, so the symbol “x” is really excess baggage and, as such, can be
discarded. In short, we may assume that S = {1, 2,..., n}.

Let’s recall what is meant by the product of two elements of A(S). If
o, T € A(S), then we defined ot by (o7)(s) = o(7(s)) for every s € S. We
showed in Section 4 of Chapter 1 that A(S) satisfied four properties that we
used later as the model to define the notion of an abstract group. Thus S,,, in
particular, is a group relative to the product of mappings.

Our first need is some handy way of denoting a permutation, that is, an
element oin §,. One clear way is to make a table of what o does to each ele-
ment of S. This might be called the graph of o. We did this earlier, writing
out g, say o € S;, in the fashion: o: x; = x,, x, = x5, x3 — x,. But this is
cumbersome and space consuming. We certainly can make it more compact

; g i) In this symbol the number in

the second row is the image under o of the number in the first row directly
above it. There is nothing holy about 3 in all this; it works equally well for
any n.

by dropping the x’s and writing o = (
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Ifoce S,and o(1) =iy, 0(2) = i,,..., o(n) = i,, we use the symbol

(1 2 Mo represent o and we write o = L2 - n> Note

ll lz e o o ln il i2 LI I ] ln
that it is not necessary to write the first row in the usual order1 2 --- n;
any way we write the first row, as long as we carry the i’s along accord-
ingly, we still have o For instance, in the example in S; cited,

{1 23\_(312\_(213
712 3 1 1 2 3 3 2 1)

If we know o = (1 2 n), what is o~ '? It is easy, just flip the

I i2 e I,
Lo i

symbol for o over to get 0! = ( l;;) (Prove!) In our example

1 2
_ (1 2 3 (2 3 1\_(1 2 3 : :
o= (2 3 1), o = (1 ) 3) = <3 1 2). The identity element—
: : : 1 2 -+ n
which we shall write as e—is merely e = T

How does the product in S, translate in terms of these symbols? Since
ot means: “First apply 7 and to the result of this apply o,” in forming the
product of the symbols for o and 7 we look at the number & in the first row
of 7 and see what number i, is directly below k in the second row of 7. We
then look at the spot i, in the first row of o and see what is directly below it
in the second row of o. This is the image of k under o7. We then run through
k=1,2,...,n and get the symbol for o7. We just do this visually.

We illustrate this with two permutations

(1 2345\, _ (12345

T 2 315 4/3METT13 4 5 1 2
1 2 3 45

15 4 2 3/

Even the economy achieved this way is not enough. After all, the first
row is always 1 2 --- n, so we could dispense with it, and write o =

in S5. Then o1 = (

1 2 --- o . .. : .
(i i l") as (iy, i,..., iy). This is fine, but in the next section we
1 2 n

shall find a better and briefer way of representing permutations.

PROBLEMS

1. Find the products:

(3)123456123456
6 4 52 1 3\2 3 45 6 1)
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) 1 2 3 4 5\/1 2 3 45

213 4 5\3 21 4 5/
© 1 2 3 4 5\7'/1 2 3 4 5\/1 23 45
D% 13 25) \213 45)\413 2 5)/)

2. Evaluate all the powers of each permutation o (i.e., find o* for all k).

@ (123456
V23 456 1/
123 456 7
(b) <2 1 3 46 5 7)'
@l 23456
D% 4 5 2 1 3/
o o o _1 y ; o« o o y
3. Prove that(.1 2 n) = (ll b l").
T 1 2 -« n

4. Find the order of each element in Problem 2.
5. Find the order of the products you obtained in Problem 1.

2. CYCLE DECOMPOSITION

We continue the process of simplifying the notation used to represent a given
permutation. In doing so, we get something more than just a new symbol; we
get a device to decompose any permutation as a product of particularly nice
permutations.

Definition. Let i, i,,..., i, be k distinct integers in S = {1, 2, ..., n}.
The symbol (i; i, --- i) will represent the permutation o € §,,, where
o(iy) = iy, o(ip) = i3,..., o(;) = iy for j < k, o() = iy, and
o(s) = s for any s € § if s is different from i, ,, ..., .

Thus, in S;, the permutation (1 3 5 4) is the permutation
1 23 45 6 7
(3 2 51 4 6 7
a k-cycle. For the special case k = 2, the permutation (i; i,) is called a trans-
position. Note thatif o= (i; i, --- i),thencisalso (i, i i, -+ ixy),
(ixk—y i, iy i +++ ir_,), and so on. (Prove!) For example,

135 =413 5=05413)=3 5 4 1.

). We call a permutation of the form (i; i, --- i)

Two cycles, say a k-cycle and an m-cycle, are said to be disjoint cycles if
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they have no integer in common. Whence (1 3 S)and (4 2 6 7)in S,
are disjoint cycles.

Given two disjoint cycles in S,, we claim that they commute. We leave
the proof of this to the reader, with the suggestion that if o, 7 are disjoint
cycles, the reader should verify that (o7)(i) = (7o)(i) for every i € § =
{1,2,..., n}). We state this result as

Lemma 3.2.1. If o, T € S, are disjoint cycles, then o1 = 70.

Let’s consider a particular k-cycle o = (1 2 --- k) in §,. Clearly,
o(1) = 2 by the definition given above; how is 3 related to 1? Since o(2) = 3,
we have o?(1) = o(2) = 3. Continuing, we see that /(1) = j + 1 for
j =k — 1, while o* (1) = 1. In fact, we see that o* = e, where e is the identity
element in S,,.

There are two things to be concluded from the paragraph above.

1. The order of a k-cycle, as an element of S,,, is k. (Prove!)

2. If o= (iy i, --- iy is a k-cycle, then the orbit of i; under o (see
Problem 27 in Section 4 of Chapter 1) is {i, i,, ..., i,}. So we can see
that the k-cycle o= (i; i, --- iy)is

o= (i o) Uz(il) o'k_l(il))-

Given any permutation 7in S,, fori € {1, 2, ..., n}, consider the orbit
of i under 7. We have that this orbiti is {i, (i), 72(i),..., 7~ '(i)}, where
7°(i) = i and s is the smallest positive integer with this property. Consider the
s-cycle (i 7(i) 72(i) --- 71°7'(i)); we call it the cycle of T determined by i.

We take a specific example and find all its cycles. Let

(1 23 4567809
T"\3 9 4156 2 7 8

b

what is the cycle of 7 determined by 1? We claim that it is (1 3 4). Why?
7 takes 1 into 3, 3 into 4 and 4 into 1, and since 7(1) = 3, 72(1) = 7(3) = 4,
73(1) = 7(4) = 1. We can get this visually by weaving through

(l 2 3 4 5 6 7 8 9)

with the thin path. What is the cycle of 7 determined by 2? Weaving
through



Sec. 2 Cycle Decomposition 113

with the thin path, we see that the cycle of 7 determined by 2 is
(2 9 8 7). The cycles of T determined by 5 and 6 are (5) and (6), respec-
tively, since 5 and 6 are left fixed by 7. So the cycles of 7 are (1 3 4),
2 9 8 7),(5),and (6). Therefore we have that r=(1 3 4)2 9 8 7)
(5)(6), where we view these cycles—as defined above—as permutations in S,
because every integer in § = {1, 2, ..., 9} appears in one and only one cycle,
and the image of any i under 7 is read off from the cycle in which it appears.

There is nothing special about the permutation 7 above that made the
argument we gave go through. The same argument would hold for any per-
mutation in S, for any n. We leave the formal writing down of the proof to
the reader.

Theorem 3.2.2. Every permutation in S, is the product of disjoint
cycles.

In writing a permutation o as a product of disjoint cycles, we omit all
1-cycles; that is, we ignore the i’s such that o(i) = i. Thus we write
o= (12 3)4 5)(6)(7) simply as o = (1 2 3)(4 5). In other words, writing
o as a product of k-cycles, with k£ > 1, we assume that o leaves fixed any in-
teger not present in any of the cycles. Thus in the group §;; the permuta-
tonT=(1 5 6)(2 3 9 8 7)leaves fixed 4, 10, and 11.

Lemma 3.2.3. If 7in S, is a k-cycle, then the order of 7 is k; that is,
" =eand 17/ # efor0 <j < k.

Consider the permutation 7 = (1 2)(3 4 5 6)(7 8 9) in §,.
What is its order? Since the disjoint cycles (1 2), (3 4 5 6),(7 8 9)
commute, 7" = (1 2)"(3 4 5 6)"(7 8 9)”; in order that 7" = e we
need (1 2)" =¢,(3 4 5 6)" =¢ (7 8 9™ = e. (Prove!) To have
(7 8 9)" = e, we must have 3 |m, since (7 8 9) is of order 3; to have
(3 4 5 6)" = e we must have 4| m, because (3 4 5 6) is of order 4,
and to have (1 2)™ = e, we must have 2 | m, because (1 2) is of order 2.
This tells us that m must be divisible by 12.

On the other hand,

=1 2%3 4 5 67 8 9=e

So 7is of order 12.

Here, again, the special properties of 7 do not enter the picture. What
we did for 7 works for any permutation. To formulate this properly, recall
that the least common multiple of m and »n is the smallest positive integer v
which is divisible by m and by n. (See Problem 7, Chapter 1, Section 5.) Then
we have
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Theorem 3.2.4. Let o € §, have its cycle decomposition into disjoint
cycles of length m,, m,, ..., m,. Then the order of o is the least common
multiple of m, m,, ..., m,.

Proof. Let o = 77, 7, Wwhere the 7; are disjoint cycles of length m;.
Since the 7; are disjoint cycles, 7,7, = 7,7,; therefore if M is the least common
multiple of m;, m,,..., my, then o™ = (7;7, - - )M =My ... M =¢
(since 7¥= e because 7; is of order m; and m; | M). Therefore, the order of
o is at most M. On the other hand, if " = e, then 7%7Y - - - 7Y = e. This
forces each 7% = e, (prove!) because 7; are disjoint permutations, so m; | N,
since 7; is of order m;. Thus N is divisible by the least common multiple of
my, my,..., m,, so M|N. Consequently, we see that o is of order M as

claimed in the theorem. []

Note that the disjointness of the cycles in the theorem is imperative.
For instance, (1 2) and (1 3), which are not disjoint, are each of order 2,
but their product (1 2)(1 3)=(1 3 2)isof order 3.

Let’s consider Theorem 3.2.4 in the context of a card shuffle. Suppose
that we shuffle a deck of 13 cards in such a way that the top card is put into
the position of the 3rd card, the second in that of the 4th, . . ., the ith into the
i + 2 position, working mod 13. As a permutation, o, of 1, 2,..., 13, the
shuffle becomes

1 2 3 45
345 6 7

o0 O

7 8 9 10 11 12 13
9 10 11 12 13 1 2p

and ois merelythe 13cycle (1 3 5 7 9 11 13 2 4 6 8 10 12),
so o is of order 13. How many times must we repeat this shuffle to get the
cards back to their original order? The answer is merely the order of o, that
is, 13. So it takes 13 repeats of the shuffle to get the cards back to their origi-
nal order.

Let’s give a twist to the shuffle above. Suppose that we shuffle the
cards as follows. First take the top card and put it into the second-to-last
place, and then follow it by the shuffle given above. How many repeats are
now needed to get the cards back to their original order? The first operation
is the shuffle given by the permutation 7= (1 12 11 10 9 8 7 6 5
4 3 2) followed by o above. So we must compute o7 and find its order.
But

or=(1 357 9 11 13 2 4 6 8 10 12)
x(1 12 11 10 9 8 7 6 5 4 3 2)
—(M2 3 456 7 8 9 10 11 12 13),
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so is of order 12. So it would take 12 repeats of the shuffle to get back to the
original order.

Can you find a shuffle of the 13 cards that would require 42 repeats? Or
20 repeats? What shuffle would require the greatest number of repeats, and
what would this number be?

We return to the general discussion. Consider the permutation
(1 2 3); we see that (1 2 3) = (1 3)(1 2). We can also see that
(1 2 3)= (2 3)(1 3). So two things are evident. First, we can write
(1 2 3) as the product of two transpositions, and in at least two distinct
ways. Given the k-cycle (i; i, --- i), them (i i, -+ i) =
(iy, i)y ik_y) - (i; 1), so every k-cycle is a product of k — 1 transposi-
tions (if £ > 1) and this can be done in several ways, so not in a unique way.
Because every permutation is the product of disjoint cycles and every cycle is
a product of transpositions we have

Theorem 3.2.5. Every permutation in S, is the product of transposi-
tions.

This theorem is really not surprising for it says, after all, nothing more
or less than that any permutation can be effected by carrying out a series of
interchanges of two objects at a time.

We saw that there is a lack of uniqueness in representing a given per-
mutation as a product of transpositions. But, as we shall see in Section 3,
some aspects of this decomposition are indeed unique.

As a final word of this section, we would like to point out the conve-
nience of cycle notation. When we represent elements of a permutation
group as products of disjoint cycles, many things become transparent—for
example, the order of the permutation is visible at a glance. To illustrate this
point, we now give a few examples of certain geometric groups, which are in
fact permutation groups that have already appeared in Chapter 2 under dif-
ferent guises.

Examples

1. Informally, a motion of a geometric figure is a permutation of its vertices
that can be realized by a rigid motion in space. For example, there are eight
motions of a square, whose vertices are numbered 1, 2, 3, 4 as below:

4 3
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= (13) is the reflection about the axis of symmetry joining vertices 2 and
4 in the original position,
B = (1234) is the counterclockwise rotation by 90°,
B% = (13)(24) is the counterclockwise rotation by 180°,
B* = (1432) is the counterclockwise rotation by 270°,
afy = (12)(34) is the reflection in the vertical axis of symmetry,
af? = (24) is the reflection in the other diagonal axis,
af® = (14)(23) is the reflection in the horizontal axis, and, of course

o’ = B* = (1) is the “motion” that leaves the vertices unchanged.

We also have the relation Ba = af’.

These motions, or symmetries of a square, form a subgroup of S, which is
called the octic group, or the dihedral group of order 8. This group (or,
strictly speaking, a group isomorphic to it) was introduced in Example 9 of
Section 2.1 without mention of permutations.

2. There are only four symmetries of a non-square rectangle:

4 ' 3

_____________________

1 I 2
the reflections in the two axes of symmetry, rotation by 180° and the identity.
These motions can be identified with permutations (1), (14)(23), (12)(34),

(13)(24), and form a subgroup of the group obtained in Example 1. This sub-
group is often called Klein’s 4-group.

3. We leave it to the reader to verify that the group of all motions of an
equilateral triangle is the full symmetric group S;.

3

1 2

4. The motions of a regular hexagon form the dihedral group of order 12,
generated by the permutations a = (15)(24), corresponding to a reflection
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about one of the axes of symmetry, and B = (123456), corresponding to the
counterclockwise rotation by 60°.

1 2

In general, the dihedral group of order 2n, which was first introduced in Ex-
ample 10 of Section 2.1, can be interpreted as the group of symmetries of a
regular n-gon (a polygon with n edges of equal length).

PROBLEMS
Easier Problems

1. Show that if o, T are two disjoint cycles, then o7 = 70.
2. Find the cycle decomposition and order.

@ (234567809
3142769 85)
1234567

(b)<7654321>'

@l 234567 (1234567
765342 1/\2315¢674)f

3. Express as the product of disjoint cycles and find the order.
@@ 2 3 5 72 4 7 6).
® (1 2)1 31 4).
@@ 2 3 4 510 2 3 4 6)1 2 3 4 7).
@@ 2 3)1 3 2).
e (1 2 33 5 7 91 2 3L
®@Q 2 3 4 5):°

4. Give a complete proof of Theorem 3.2.2.

5. Show that a k-cycle has order k.

6. Find a shuffle of a deck of 13 cards that requires 42 repeats to return the
cards to their original order.
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7. Do Problem 6 for a shuffle requiring 20 repeats.

8. Express the permutations in Problem 3 as the product of transpositions.

9. Given the two transpositions (1 2) and (1 3), find a permutation o
such that o(1 2)o™ ' = (1 3).

10. Prove that there is no permutation osuch that (1 2)c'=(1 2 3).

11. Prove that there is a permutation o such that o(1 2 3)o! =
4 5 6)

12. Prove that there is no permutation o such that o(1 2 3)o™! =
1 2 45 6 7).

Middle-Level Problems

13. Prove that (1 2) cannot be written as the product of disjoint 3-

cycles.

14. Prove that for any permutation o, oro ! is a transposition if 7 is a trans-
position.

15. Show that if 7is a k-cycle, then oro ! is also a k-cycle, for any permuta-
tion o.

16. Let ® be an automorphism of S;. Show that there is an element o € §;
such that ®(7) = o 70 for every 7 € S;.

17. Let (1 2)and (1 2 3 --- n)beinS,. Show that any subgroup of S,
that contains both of these must be all of S, (so these two permutations
generate S,,).

18. If 7, and 7, are two transpositions, show that 7,7, can be expressed as the
product of 3-cycles (not necessarily disjoint).

19. Prove that if 7, 7,, and 75 are transpositions, then 7,7,7; # e, the identity
element of S,,.

20. If 7, 7, are distinct transpositions, show that 7,7, is of order 2 or 3.

21. If o, T are two permutations that disturb no common element and o7 = e,
prove that o = 71 =e.

22. Find an algorithm for finding o7 ~! for any permutations o, 7of S,,.

23. Let o, 7 be two permutations such that they both have decompositions
into disjoint cycles of cycles of lengths m, m,,..., m,. (We say that
they have similar decompositions into disjoint cycles.) Prove that for
some permutation p, 7 = pop .

24. Find the conjugacy classin S, of (1 2 --- n). What is the order of the
centralizerof (1 2 --- n)inS,?

25. Do Problem 24 foro= (1 2)(3 4).
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3. ODD AND EVEN PERMUTATIONS

We noticed in Section 2 that although every permutation is the product of trans-
positions, this decomposition is not unique. We did comment, however, that cer-
tain aspects of this kind of decomposition are unique. We go into this now.

Let’s consider the special case of S, for here we can see everything ex-
plicitly. Let f(x,, x,, x3) = (x; — x,)(x; — x3)(x, — x3) be an expression in
the three variables x;, x,, x5. We let S5 act on f(x) = f(x;, x,, x3) as follows.
If o € S;, then

a*(f(x)) = (xa(l) - xa(Z)) (xa(l) - x0(3))(x0'(2) - x0(3))'

We consider what o* does to f(x) for a few of the o’s in ;.
Consider o = (1 2). Then o(1) = 2, 0(2) = 1, and o(3) = 3, so that

a*(f(x)) = (Xo1)y = Xo2) (Xo(1y — Xo3)(Xo2) — Xo(3))

(x2 = x1) (x2 = x3)(x; — x3)

= —(x; = x2)(x; — x3)(x; — x3)

- ().
So o* coming from o = (1 2) changes the sign of f(x). Let’s look at the ac-
tion of another element, 7= (1 2 3), of S5 on f(x). Then

™(f(x)) = (x'r(l) - x‘r(2)) (xr(l) - xf(s))(xf(z) - x7(3))

= (X, = x3)(x; — x1)(x3 — xy)

= (x; — x)(x; — x3)(x; — x3)

= f(x),

so ™ coming from v = (1 2 3) leaves f(x) unchanged. What about the
other permutations in S;; how do they affect f(x)? Of course, the identity el-
ement e induces a map e* on f(x) which does not change f(x) at all. What
does 72, for 7 above, do to f(x)? Since 7*f(x) = f(x), we immediately see that

(7'2) *(f(x)) = (x#(l) - x72(2)) (xr2(1) - xfz(s)) (x*rz(Z) - x#(s))
= f(x). (Prove!)

Now consider or = (1 2)(1 2 3) = (2 3); since 7 leaves f(x) alone and o
changes the sign of f(x), or must change the sign of f(x). Similarly, (1 3) changes
the sign of f(x). We have accounted for the action of every element of S; on f(x).
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Suppose that p € S5 is a product p = 7y7,--- 7, of transpositions
71, ..., Tx; then p acting on f(x) will change the sign of f(x) k times, since
each 7; changes the sign of f(x). So p*(f(x)) = (-1)*f(x). If p = 010, - - - 7,
where oy,..., o, are transpositions, by the same reasoning, p*(f(x)) =
(—=1)'f(x). Therefore, (—1)*f(x) = (—1)'f(x), whence (—1)" = (—1)* This
tells us that ¢ and k have the same parity; that is, if ¢ is odd, then k must be
odd, and if ¢ is even, then k must be even.

This suggests that although the decomposition of a given permutation o
as a product of transposition is not unique, the parity of the number of trans-
positions in such a decomposition of o might be unique.

We strive for this goal now, suggesting to readers that they carry out
the argument that we do for arbitrary » for the special case n = 4.

As we did above, define f(x) = f(x;, ..., x,) to be

)= —x) (= %) —x3) (2 = %,) (% — X,)

= n x: — xj)’

i<j

where in this product i takes on all values from 1 to n — 1 inclusive, and j all
those from 2 to » inclusive. If o € §,,, define o* on f(x) by

a*(f(x)) = L]j(xa(i) ~ X))

If o, 7€ S, then

(ony*(f)) = 11 X@ni) = Xeng)) = o* <L]] Xy — x,(j))>

i<j

o (# (1 = %)) = o7 0m = e
So (o7)* = o*7* when applied to f(x).

What does a transposition 7 do to f(x)? We claim that 7*(f(x)) =
—f(x). To prove this, assuming that 7 = (i j) where i < j, we count up the
number of (x, — x,), with u < v, which get transformed into an (x, — x;,) with
a > b. This happens for (x, — x;) if i <u <j, for (x; — x,)if i <v <}, and fi-
nally, for (x; — x;). Each of these leads to a change of sign on f(x) and since
there are 2(j — i — 1) + 1 such, that is, an odd number of them, we get an
odd number of changes of sign on f(x) when acted on by 7*. Thus
7*(f(x)) = —f(x). Therefore, our claim that 7*(f(x)) = —f(x) for every
transposition 7 is substantiated.
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If o is any permutation in S, and o = 77, - - - 7}, Where 7, 75,..., T,
are transpositions, then o* = (77, - - - 7)* = 7%7% .- - 7% as acting on f(x),
and since each 7%(f(x)) = —f(x), we see that o*( f(x)) = (—1)*f(x). Simi-
larly, if ¢ = (¢, - ¢, where {y, {,,..., {, are transpositions, then
o*(f(x)) = (—=1)'f(x). Comparing these two evaluations of o*(f(x)), we
conclude that (—1)* = (—1)*. So these two decompositions of ¢ as the prod-
uct of transpositions are of the same parity. Thus any permutation is either
the product of an odd number of transpositions or the product of an even
number of transpositions, and no product of an even number of transpositions
can equal a product of an odd number of transpositions.

This suggests the following

Definition. The permutation o € S, is an odd permutation if o is the
product of an odd number of transpositions, and is an even permutation if o
is the product of an even number of transpositions.

What we have proved above is

Theorem 3.3.1. A permutation in S, is either an odd or an even per-
mutation, but cannot be both.

With Theorem 3.3.1 behind us we can deduce a number of its conse-
quences.

Let A, be the set of all even permutations; if o, 7 € A,, then we imme-
diately have that o7 € A,. Since A, is thus a finite closed subset of the (fi-
nite) group S,,, A, is a subgroup of S,, by Lemma 2.3.2. A,, is called the alter-
nating group of degree n.

We can show that A, is a subgroup of S, in another way. We already
saw that A, is closed under the product of S,, so to know that A, is a sub-
group of S, we merely need show that o € S, implies that ™' € §,. For any
permutation o we claim that o and o' are of the same parity. Why? Well, if
o = 7,7, ** T, Where the 7; are transpositions, then

-1 -1 — —1.-1 |, —1.-1 _
o = (7'17'2 Tk) = Tk Tk—1 T T = TeTr-1 71,

since 7, ! = 7,. Therefore, we see that the parity of o and o ! is (—1)*, so
they are of equal parity. This certainly shows that o € A, forces 0! € A,
whence A, is a subgroup of §,,.

But it shows a little more, namely that A, is a normal subgroup of §,,.
For suppose that o € A, and p € S,. What is the parity of p~'op? By the
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above, p and p~! are of the same parity and o is an even permutation so p~'op
is an even permutation, hence is in A,. Thus A, is a normal subgroup of §,,.
We summarize what we have done in

Theorem 3.3.2. A,, the alternating group of degree n, is a normal
subgroup of §,,.

We look at this in yet another way. From the very definitions involved
we have the following simple rules for the product of permutations:

1. The product of two even permutations is even.
2. The product of two odd permutations is even.

3. The product of an even permutation by an odd one (or of an odd one
by an even one) is odd.

If o is an even permutation, let 6(o) = 1, and if o is an odd permuta-
tion, let (o) = —1. The foregoing rules about products translate into
6(o1) = 6(0)6(7), so 6 is a homomorphism of S, onto the group E = {1, —1}
of order 2 under multiplication. What is the kernel, N, of 6? By the very defi-
nition of A, we see that N = A . So by the First Homomorphism Theorem,
E=S,/A,. Thus2 = |E| =|S,/A,| = |S,|/|A,|, if n > 1. This gives us that
A, = 28| = 3n!.

Therefore,

Theorem 3.3.3. Forn > 1, A, is a normal subgroup of S, of order 3n!.

Corollary. For n > 1, S, contains 3n! even permutations and 3n! odd
permutations.

A final few words about the proof of Theorem 3.3.1 before we close
this section. Many different proofs of Theorem 3.3.1 are known. Quite
frankly, we do not particularly like any of them. Some involve what might be
called a “collection process,” where one tries to show that e cannot be writ-
ten as the product of an odd number of transpositions by assuming that it is
such a shortest product, and by the appropriate finagling with this product,
shortening it to get a contradiction. Other proofs use other devices. The
proof we gave exploits the gimmick of the function f(x), which, in some
sense, 1s extraneous to the whole affair. However, the proof given is probably
the most transparent of them all, which is why we used it.

Finally, the group A,, for n = 5, is an extremely interesting group. We
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shall show in Chapter 6 that the only normal subgroups of A,, for n = 5, are
(e) and A, itself. A group with this property is called a simple group (not to
be confused with an easy group). The abelian finite simple groups are merely
the groups of prime order. The A, for n = 5 provide us with an infinite fam-
ily of nonabelian finite simple groups. There are other infinite families of finite
simple groups. In the last 20 years or so the heroic efforts of algebraists have
determined all finite simple groups. The determination of these simple groups
runs about 10,000 printed pages. Interestingly enough, any nonabelian finite
simple group must have even order.

PROBLEMS
Easier Problems

1. Find the parity of each permutation.

(a)123456789
2 45137 89 6)

@A 2 3 45 6)(7 8 9).
@ 23 45 6)(1 2 3 45 7).
@@ 21 2 3)4 56 6 81 7 9).
2. If ois a k-cycle, show that o is an odd permutation if k£ is even, and is an

even permutation if k is odd.

1

3. Prove that oand 7707, for any o, T € §,,, are of the same parity.

4. If m < n, we can consider §,, C S, by viewing o € §, as acting on
1,2,...,m,...,nasitdidon 1, 2,..., m and o leaves j > m fixed.
Prove that the parity of a permutation in §,,, when viewed this way as an
element of S,, does not change.

5. Suppose you are told that the permutation

1 23 456 7 8 9
3 1 2 7 8 9 6

in Sy, where the images of 5 and 4 have been lost, is an even permuta-
tion. What must the images of 5 and 4 be?

Middle-Level Problems

6. If n = 3, show that every element in A, is a product of 3-cycles.
7. Show that every element in A, is a product of n-cycles.
8. Find a normal subgroup in A, of order 4.
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Harder Problems (In fact, very hard)

9. If n =5and (e) # N C A, is a normal subgroup of A,, show that N must
contain a 3-cycle.

10. Using the result of Problem 9, show that if » = 5, the only normal sub-

groups of A, are (e) and A,, itself. (Thus the groups A, for n = 5 give us
an infinite family of nonabelian finite simple groups.)



4

RING THEORY

1. DEFINITIONS AND EXAMPLES

So far in our study of abstract algebra, we have been introduced to one kind
of abstract system, which plays a central role in the algebra of today. That
was the notion of a group. Because a group is an algebraic system with only
one operation, and because a group need not satisfy the rule ab = ba, it ran
somewhat counter to our prior experience in algebra. We were used to sys-
tems where you could both add and multiply elements and where the ele-
ments did satisfy the commutative law of multiplication ab = ba. Further-
more, these systems of our acquaintance usually came from sets of
numbers—integers, rational, real, and for some, complex.

The next algebraic object we shall consider is a ring. In many ways
this system will be more reminiscent of what we had previously known
than were groups. For one thing rings will be endowed with addition and
multiplication, and these will be subjected to many of the familiar rules
we all know from arithmetic. On the other hand, rings need not come
from our usual number systems, and, in fact, usually have little to do with
these familiar ones. Although many of the formal rules of arithmetic
hold, many strange—or what may seem as strange—phenomena do take
place. As we proceed and see examples of rings, we shall see some of
these things occur.

With this preamble over we are ready to begin. Naturally enough, the
first thing we should do is to define that which we’ll be talking about.

125
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Definition. A nonempty set R is said to be a ring if in R there are two
operations + and - such that:

(a) a, b € R implies thata + b € R.

(b) a+ b=b +afora,b€ER.

(c) (a+b)+c=a+ (b+c)fora,b,cER.

(d) There exists an element 0 € R such that a + 0 = a for every a € R.

(e) Given a € R, there exists a b € R such that a + b = 0. (We shall write
b as —a.)

Note that so far all we have said is that R is an abelian group under +. We
now spell out the rules for the multiplication in R.

(f) a, b € R implies thata-b € R.
(g) a-(b-c)=(a-b)-cfora,b,c ER.

This is all that we insist on as far as the multiplication by itself is concerned.
But the + and - are not allowed to live in solitary splendor. We interweave
them by the two distributive laws

(h) a-(b+c)=a-b+a-c and
(b+c)ra=b-a+c-a,fora b,c€ER.

These axioms for a ring look familiar. They should be, for the concept
of ring was introduced as a generalization of what happens in the integers.
Because of Axiom (g), the associative law of multiplication, the rings we de-
fined are usually called associative rings. Nonassociative rings do exist, and
some of these play an important role in mathematics. But they shall not be
our concern here. So whenever we use the word “ring” we shall always mean
“associative ring.”

Although Axioms (a) to (h) are familiar, there are certain things they
do not say. We look at some of the familiar rules that are not insisted upon
for a general ring.

First, we do not postulate the existence of an element 1 € R such that
a-1=1-a = afor every a € R. Many of the examples we shall encounter
will have such an element, and in that case we say that R is a ring with unit.
In all fairness we should point out that many algebraists do demand that a
ring have a unit element. We do insist that 1 # 0; that is, the ring consisting
of 0 alone is not a ring with unit.
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Second, in our previous experience with things of this sort, whenever
a - b = 0 we concluded that a = 0 or b = 0. This need not be true, in general,
in a ring. When it does hold, the ring is kind of nice and is given a special
name; it is called a domain.

Third, nothing is said in the axioms for a ring that will imply the com-
mutative law of multiplication a - b = b - a. There are noncommutative rings
where this law does not hold; we shall see some soon. Our main concern in
this chapter will be with commutative rings, but for many of the early results
the commutativity of the ring studied will not be assumed.

As we mentioned above, some things make certain rings nicer than oth-
ers, and so become worthy of having a special name. We quickly give a list of
definitions for some of these nicer rings.

Definition. A commutative ring R is an integral domain if a-b = 0 in
R implies that a = O or b = 0.

It should be pointed out that some algebra books insist that an integral
domain contain a unit element. In reading another book, the reader should
check if this is the case there. The integers, Z, give us an obvious example of
an integral domain. We shall see other, somewhat less obvious ones.

Definition. A ring R with unit is said to be a division ring if for every
a # 0 in R there is an element b € R (usually written as a~') such that
aral=a'la=1

The reason for calling such a ring a division ring is quite clear, for we
can divide (at least keeping left and right sides in mind). Although noncom-
mutative division rings exist with fair frequency and do play an important
role in noncommutative algebra, they are fairly complicated and we shall
give only one example of these. This division ring is the great classic one in-
troduced by Hamilton in 1843 and is known as the ring of quaternions. (See
Example 13 below.)

Finally, we come to perhaps the nicest example of a class of rings, the field.

Definition. A ring R is said to be a field if R is a commutative division
ring.

In other words, a field is a commutative ring in which we can divide
freely by nonzero elements. Otherwise put, R is a field if the nonzero ele-
ments of R form an abelian group under -, the product in R.
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For fields we do have some ready examples: the rational numbers, the
real numbers, the complex numbers. But we shall see many more, perhaps
less familiar, examples. Chapter 5 will be devoted to the study of fields.

We spend the rest of the time in this section looking at some examples
of rings. We shall drop the - for the product and shall write a - b simply as ab.

Examples

1. It is obvious which ring we should pick as our first example, namely Z, the
ring of integers under the usual addition and multiplication of integers. Natu-
rally enough, Z is an example of an integral domain.

2. The second example is equally obvious as a choice. Let Q be the set of all
rational numbers. As we all know, Q satisfies all the rules needed for a field,
so Q is a field.

3. The real numbers, R, also give us an example of a field.
4. The complex numbers, C, form a field.

Note that Q@ C R C C; we describe this by saying that Q is a subfield of
R (and of C) and R is a subfield of C.

5. Let R = Zg, the integers mod 6, with the addition and the multiplication
defined by [a] + [b] = [a + b] and [a][b] = [ab].

Note that [0] is the 0 required by our axioms for a ring, and [1] is the unit
element of R. Note, however, that Z; is not an integral domain, for
[2][3] = [6] = [0], yet [2] # [0] and [3] # [O]. R is a commutative ring with unit.

This example suggests the

Definition. An element a # 0 in a ring R is a zero-divisorin R if ab = 0
for some b # 0 in R.

We should really call what we defined a left zero-divisor; however,
since we shall mainly talk about commutative rings, we shall not need any
left-right distinction for zero-divisors.

Note that both [2] and [3] in Z4 are zero-divisors. An integral domain
is, of course, a commutative ring without zero-divisors.

6. Let R = Zs, the ring of integers mod 5. R is, of course, a commutative ring
with unit. But it is more; in fact, it is a field. Its nonzero elements are [1], [2],
[3], [4] and we note that [2][3] = [6] = [1], and [1] and [4] are their own in-
verses. So every nonzero element in Z; has an inverse in Zs.

We generalize this to any prime p.
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7. Let Z, be the integers mod p, where p is a prime. Again Z, is clearly a
commutative ring with 1. We claim that Z, is a field. To see this, note that if
[a] # [0], then p | a. Therefore, by Fermat’s Theorem (Corollary to Theorem
2.4.8), a? "' = 1(p). For the classes [] this says that [a? '] = [1]. But [a? ] =
[a]?~!, so [a]”~" = [1]; therefore, [a]”~* is the required inverse for [a] in Z,,,
hence Z, is a field.

Because Z, has only a finite number of elements, it is called a finite
field. Later we shall construct finite fields different from the Z’s.

8. Let Q be the rational numbers; if a € Q, we can write a = m/n, where m
and n are relatively prime integers. Call this the reduced form for a. Let R be
the set of all a € Q in whose reduced form the denominator is odd. Under
the usual addition and multiplication in Q the set R forms a ring. It is an inte-
gral domain with unit but is not a field, for 3, the needed inverse of 2, is not
in R. Exactly which elements in R do have their inverses in R?

9. Let R be the set of all a € Q in whose reduced form the denominator is
not divisible by a fixed prime p. As in (8), R is a ring under the usual addi-
tion and multiplication in Q, is an integral domain but is not a field. What
elements of R have their inverses in R?

Both Examples 8 and 9 are subrings of QQ in the following sense.

Definition. If R is a ring, then a subring of R is a subset S of R which
is a ring if the operations ab and a + b are just the operations of R applied to
the elements a, b € S.

For S to be a subring, it is necessary and sufficient that S be nonempty
and that ab,a = b € Sfor all a, b € S. (Prove!)

We give one further commutative example. This one comes from the
calculus.

10. Let R be the set of all real-valued continuous functions on the closed unit
interval [0, 1]. For f, g € R and x € [0, 1] define (f + g)(x) = f(x) + g(x),
and (f- g)(x) = f(x)g (x). From the results in the calculus, f + g and f- g are
again continuous functions on [0, 1]. With these operations R is a commuta-
tive ring. It is not an integral domain. For instance, if f(x) = —x + 3 for
O<x=3%andf(x) =0for3 <x=1,and if g(x) = 0for 0 = x =< % and
g(x) =2x — 1for3 < x =1, then f, g € R and, as is easy to verify, f- g = 0.
It does have a unit element, namely the function e defined by e(x) = 1 for all
x € [0, 1]. What elements of R have their inverses in R?
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We should now like to see some noncommutative examples. These are
not so easy to come by, although noncommutative rings exist in abundance,
because we are not assuming any knowledge of linear algebra on the reader’s
part. The easiest and most natural first source of such examples is the set of
matrices over a field. So, in our first noncommutative example, we shall
really create the 2 X 2 matrices with real entries.

11. Let F be the field of real numbers and let R be the set of all formal square

arrays
a b
c d

where q, b, ¢, d are any real numbers. For such square arrays we define addi-
tion in a natural way by defining

a; b, + (% b\ _ (a; + a, by + b,
¢, d; c, d, ¢, +c¢, d +d,)
It is easy to see that R forms an abelian group under this + with (8 8) act-

—a -—b
—c —d
R aring, we need a multiplication. We define one in what may seem a highly
unnatural way via

a b\(r s _ ar + bt as + bu
c d/\t u cr +dt cs +du)

It may be a little laborious, but one can check that with these operations R is a

ing as the zero element and ( ) the negative of <‘; Z) To make of

noncommutative ring with (O (1)> acting as its multiplicative unit element.

Note that

1 0\/0 0y (0 O

0 o)At 0o/ \0 O
while

0 0\/1 O _ 0 O

1 0/AO O 1 0/
SO
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Note that (1 0

0 0 .
0 0) and (1 0) are zero-divisors; in fact,

=60 = (0

1s a nonzero element whose square is the 0 element of R. This R is known as
the ring of all 2 X 2 matrices over F, the real field.

For those unfamiliar with these matrices, and who see no sense in the
product defined for them, let’s look at how we do compute the product. To
get the top left entry in the product AB, we “multiply” the first row of A by
the first column of B, where A, B € R. For the top right entry, it is the first
row of A versus the second column of B. The bottom left entry comes from
the second row of A versus the first column of B, and finally, the bottom
right entry is the second column of A versus the second column of B.

We illustrate with an example: Let

13 o3
A=<_3 2) and B=<7r —w)'

Then the first row of A is 1, 5 and the first column of B is 3, 7; we “multiply”
thesevial-2 + 3 - 7= w/2 + %, and so on. So we see that

1
. 5 + w2 — 7/2
- )

-1+ 27 -
In the problems we shall have many matrix multiplications, so that the
reader can acquire some familiarity with this strange but important example.

no AN

12. Let R be any ring and let

o [

with + and - as defined in Example 11. One can verify that S is a ring, also,
under these operations. It is called the ring of 2 X 2 matrices over R.

a,b,c,dER}

Our final example is one of the great classical examples, the real qua-
ternions, introduced by Hamilton (as a noncommutative parallel to the com-
plex numbers).

13. The quaternions. Let F be the field of real numbers and consider the set
of all formal symbols oy + @i + a,j + ask, where «q, oy, a,, a; € F.
Equality and addition of these symbols are easy, via the obvious route
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ag + a;i + a,] + azk = By + By + Byj + Bsk
if and only if oy = By, @1 = B, @, = B, and a; = B;, and
(ag + aji + apj + azk) + (By + Bii + Boj + Bsk)
=(ap+ By) + (g + B)i + (ay + Br)j + (a5 + Bs)k.

We now come to the tricky part, the multiplication. When Hamilton discov-
ered it on October 6, 1843, he cut the basic rules of this product out with his
penknife on Brougham Bridge in Dublin. The product is based on i* = j* =
k*=—1,ij=k,jk =i ki =jandji = —k, kj = —i, ik = —j. If we go around
the circle clockwise

i
)

the product of any two successive ones is the next one, and going around
counterclockwise we get the negatives.

We can write out the product now of any two quaternions, according to
the rules above, declaring by definition that

(g + aqi + ax] + azk)(By + Bii + Boj + Bsk)
=Y t vt vt vk,
where
Yo = oo — o181 — a3 — asfPs
Y1 = o t aufly + arfls — asf3 (I)
Y2 = aoBy — B + ayfy T oasfB
Y3 = aoBs T B — af T asfBy

It looks horrendous, doesn’t it? But it’s not as bad as all that. We are
multiplying out formally using the distributive laws and using the product
rules for the i, j, k above.

If some a;is0inx = ay + a,i + a,j + a3k, we shall omit it in express-
ing x; thus 0 + 0i + 0j + Ok will be written simply as 0,1 + 0i + 0j + Ok as 1,
0 + 3i + 4] + Ok as 3i + 4/, and so on.

A calculation reveals that

(ao + a]i + a2j+a3k)(a0 - ali - azj - a3k) (II)

=ag+af+a§+a§.
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This has a very important consequence; for suppose that x = o, + a;i +
a,j + ask # 0 (so some a; # 0). Then, since the a’s are real, 8 = af + af +
a3 + a3 # 0. Then from (II) we easily get

80 aq o

(g + aqi +ayj + a3k)(— - =i - == - %k> = 1.

So, if x # 0, then x has an inverse in the quaternions. Thus the quaternions
form a noncommutative division ring.

Although, as we mentioned earlier, there is no lack of noncommutative
division rings, the quaternions above (or some piece of them) are often the
only noncommutative division rings that even many professional mathemati-
cians have ever seen.

We shall have many problems—some easy and some quite a bit
harder—about the two examples: the 2 X 2 matrices and the quaternions.
This way the reader will be able to acquire some skill with playing with
noncommutative rings.

One final comment in this section: If y,, v;, v,, 3 are as in (I), then

(o + o + 3 + B)BE + B + B3+ B)) am
=Yt vi+ yit v
This is known as Lagrange’s Identity; it expresses the product of two sums of

four squares again as a sum of four squares. Its verification will be one of the
€XErcises.

PROBLEMS

Easier Problems

*1. Find all the elements in Z,, that are invertible (i.e., have a multiplicative
inverse) in Z,,.
. Show that any field is an integral domain.
. Show that Z,, is a field if and only if # is a prime.

2
3
4. Verify that Example 8 is a ring. Find all its invertible elements.
5. Do Problem 4 for Example 9.

6

. In Example 11, the 2 X 2 matrices over the reals, check the associative
law of multiplication.



134 Ring Theory

7. Work out the following:

1 2\(: %
(a) (4 —7)(0 1)'
2
o (Y
(3 5):
a b\f1 O 1 0\/fa b
@ (2 2o o) (o o)¢ )

) ) a b a b\/1 0\ (1 O
8. Find all matrices (c d> such that (C d)(O 0) = (O 0

Ch. 4

9. Find all 2 X 2 matrices (‘Cl Z) that commute with all 2 X 2 matrices.

10. Let R be any ring with unit, S the ring of 2 X 2 matrices over R. (See Ex-

ample 12.)

(a) Check the associative law of multiplication in S. (Remember: R need

not be commutative.)

a b
(b) Show that {(O c)

a
0

a,b,c, € R} is a subring of S.

(¢) Show that <

-1
inverses in R. In that case write down (g g) explicitly.

11. Let F: C — C be defined by F(a + bi) = a — bi. Show that:

(a) F(xy) = F(x)F(y) forx,y € C.
(b) F(xx) = |x|*
(¢) Using Parts (a) and (b), show that
(a* + bH)(? + d*) = (ac — bd)* + (ad + bc)>.
[Note: F(x) is merely x.]
12. Verify the identity in Part (c) of Problem 11 directly.
13. Find the following products of quaternions.

@ (i + )i — j).

d) 1 —-i+2j—2k)1+2i— 4 + 6k).

(¢) (2i — 3j + 4k)°.

d) i(ay + i + ay] + azk) — (g + ayi + ayj + azk)i.

ZZ) has an inverse in S if and only if a and ¢ have
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14. Show that the only quaternions commuting with i are of the form o + Bi.
15. Find the quaternions that commute with both i and j.
16. Verify that

(‘10 + oyl + o) + a3k)(a0 — oyl — ayf — a3k)

- 2 2 2 2
=a; ta + a; + a3.

17. Verify Lagrange’s Identity by a direct calculation.

Middle-Level Problems

18. In the quaternions, define

lay + aji + oy + azk] = Va + a2 + o} + di

Show that |xy| = |x| |y| for any two quaternions x and y.

19. Show that there is an infinite number of solutions to x> = —1 in the
quaternions.

20. In the quaternions, consider the following set G having eight elements:
G = {*1, xi, xj, k).
(a) Prove that G is a group (under multiplication).
(b) List all subgroups of G.

(c) What is the center of G?
(d) Show that G is a nonabelian group all of whose subgroups are

normal.
21. Show that a division ring is a domain.
22. Give an example, in the quaternions, of a noncommutative domain that
is not a division ring .

23. Define the map * in the quaternions by
(ag + i + apj+ azk)* = (ag — i — ayj — aszk).

Show that:
(@) x** = (x*)* = x.
(b) (x + y)* = x* + y*
(¢) xx* = x*x is real and nonnegative.
(@) (xy)* = y*x*.
[Note the reversal of order in Part (d).]
24. Using *, define |x| = Vxx*. Show that |xy| = |x||y| for any two qua-
ternions x and y, by using Parts (c¢) and (d) of Problem 23.
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25. Use the result of Problem 24 to prove Lagrange’s Identity.

In Problems 26 to 30, let R be the 2 X 2 matrices over the reals.

a b

26. If (c d

) € R, show that (Z Z) is invertible in R if and only if ad — bc # 0.

-1
In that case find (a b) )
c d

b

27. Define det(a
c d

) = ad — bc. For x, y € R show that det(xy) =

(det x)(det y).

28. Show that {x € R | det x # 0} forms a group, G, under matrix multiplica-
tion and that N = {x € R | det x = 1} is a normal subgroup of G.

29. If x € R is a zero-divisor, show that det x = 0, and, conversely, if x # 0 is
such that det x = 0, then x is a zero-divisor in R.

30. In R, show that {( _Z Z) a,b real} is a field.

Harder Problems

31. Let R be the ring of all 2 X 2 matrices over Z,, p a prime. Show that if

det{® 2\ =ad—bc#0 then(® 2)isinvertible in R.
c d c d

32. Let R be as in Problem 31. Show that for x, y € R, det(xy) = det(x) det(y).

33. Let G be the set of elements x in the ring R of Problem 31 such that
det(x) # 0.
(a) Prove that G is a group.
(b) Find the order of G. (Quite hard)
(¢) Find the center of G.
(d) Find a p-Sylow subgroup of G.

34. Let T be the group of matrices A with entries in the field Z, such that det A
is not equal to 0. Prove that 7 is isomorphic to S5, the symmetric group
of degree 3.

35. For R as in Example 10, show that S = {f € R| fis differentiable on (0, 1)}
is a subring of R which is not an integral domain.

If Fis a field, let H(F) be the ring of quaternions over F, that is, the
set of all oy + ayi + «a,] + a3k, where o, a4, o, &z € F and where equal-
ity, addition, and multiplication are defined as for the real quaternions.
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36. If F = C, the complex numbers, show that H(C) is not a division ring.

37. In H(C), find an element x # 0 such that x* = 0.

38. Show that H(F) is a division ring if and only if of + o + a2 + a3 =
for a,, a,, as, a, in F forces oy = a; = a; = a3 = 0.

39. If Q is the field of rational numbers, show that H(Q) is a division ring.

40. Prove that a finite domain is a division ring.

41. Use Problem 40 to show that Z, is a field if p is a prime.

2. SOME SIMPLE RESULTS

Now that we have seen some examples of rings and have had some experi-
ence playing around with them, it would seem wise to develop some compu-
tational rules. These will allow us to avoid annoying trivialities that could
beset a calculation we might be making.

The results we shall prove in this section are not very surprising, not
too interesting, and certainly not at all exciting. Neither was learning the al-
phabet, but it was something we had to do before going on to bigger and bet-
ter things. The same holds for the results we are about to prove.

Since a ring R is at least an abelian group under +, there are
certain things we know from our group theory background, for instance,
—(—a) =a, —(a+ b) =(—a) + (-b);ifa+ b =a+ c,then b = ¢, and
SO on.

We begin with

Lemma 4.2.1. Let R be any ring and let a, b € R. Then

(a) a0 =0a = 0.

(b) a(—b) = (—a)b = —(ab).
(c) (—a)(=b) = ab.

(d) If1 € R, then (—1)a = —a.

Proof. We do these in turn.

(a) Since 0 = 0 + 0, a0 = a(0 + 0) = a0 + a0, hence a0 = 0. We have
used the left distributive law in this proof. The right distributive law gives
Oa = 0.

(b) ab + a(—b) = a(b + (—b)) = a0 = 0 from Part (a). Therefore,
a(—b) = —(ab). Similarly, (—a)b = —(ab).

(c) By Part (b), (—a)(—b) = —((—a)b) = —(—(ab)) = ab, since we are
in an abelian group.



138 Ring Theory Ch. 4

(dIfte R, then(—1)a+a=(—1)a+ (1)a=(—-1+ 1)a=0a=0.So
(—1)a = —a by the definition of —a. []

Another computational result.

Lemmad4.2.2. Inanyring R, (a + b)* =a*> + b*> + ab + bafora,b € R.

Proof. This is clearly the analog of (a + B)* = o® + 2a + B in the in-
tegers, say, but keeping in mind that R may be noncommutative. So, to it. By
the right distributive law (a + b)* = (@ + b)(a + b) = (a + b)a + (a + b)b =
a’ + ba + ab + b?, exactly what was claimed. []

Can you see the noncommutative version of the binomial theorem? Try
it for (a + b)°.

One curiosity follows from the two distributive laws when R has a unit
element. The commutative law of addition follows from the rest.

Lemma 4.2.3. If R is a system with 1 satisfying all the axioms of a
ring, except possiblya + b = b + afora, b € R, then R is a ring.

Proof. We must show that a + b = b + a for a, b € R. By the right dis-
tributive law (@ + b)(1 + 1) =(a+ b)l + (a + b)l =a + b + a + b. On the
other hand, by the left distributive law (a + b)(1 + 1) =a(1 + 1) + b(1 + 1)
=a+a+b+b.Butthena+b+a+b=a+a+ b+ b;since we are in a
group under +, we can cancel a on the left and b on the right to obtain b + a
= a + b, as required. R is therefore a ring. []

We close this brief section with a result that is a little nicer. We say that
a ring R is a Boolean ring [after the English mathematician George Boole
(1815-1864)] if x> = x for every x € R.

We prove a nice result on Boolean rings.

Lemma 4.2.4. A Boolean ring is commutative.

Proof. Let x, y € R, a Boolean ring. Thus x? = x, y> = y, (x + y)* =
x+y.But(x +y) =x>+xy+yx+y*=x+xy +yx +y, by Lemma422,
so we have (x + y) = (x + y)> = x + xy + yx + y, from which we have
xy + yx = 0. Thus 0 = x(xy + yx) = x*y + xyx = xy + xyx, while 0 =
(xy + yx)x = xyx + yx* = xyx + yx. This gives us xy + xyx = xyx + yx, and
so xy = yx. Therefore, R is commutative. []
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PROBLEMS

1. Let R be a ring: since R is an abelian group under +, na has meaning for
us for n € Z, a € R. Show that (na)(mb) = (nm)(ab) if n, m are integers
anda, b € R.

2. If R is an integral domain and ab = ac fora # 0, b, ¢ € R, show that b = c.

3. If R is a finite integral domain, show that R is a field.

4. If R is a ring and e € R is such that ¢ = e, show that (xe — exe)* =
(ex — exe)? = 0 for every x € R.

5. Let R be a ring in which x* = x for every x € R. Prove that R is commu-
tative.

6. If > = 0 in R, show that ax + xa commutes with a.

7. Let R be a ring in which x* = x for every x € R. Prove that R is commu-
tative.

8. If Fis a finite field, show that:

(a) There exists a prime p such that pa = 0 for alla € F.
(b) If F has g elements, then g = p” for some integer n. (Hint: Cauchy’s
Theorem)

9. Let p be an odd prime andlet1 + 3 + --- + 1/(p — 1) = a/b, where a, b

are integers. Show that p | a. (Hint: As a runs through U,, so does a™'.)
10. If p is a prime and p > 3, show thatif 1 + 3 + --- + 1/(p — 1) = a/b, where
a, b are integers, then p? | a. (Hint: Consider 1/a” as a runs through U, .)

3. IDEALS, HOMOMORPHISMS, AND QUOTIENT RINGS

In studying groups, it turned out that homomorphisms, and their kernels—
the normal subgroups—played a central role. There is no reason to expect
that the same thing should not be true for rings. As a matter of fact, the
analogs, in the setting of rings, of homomorphism and normal subgroup do
play a key role.

With the background we have acquired about such things in group the-
ory, the parallel development for rings should be easy and quick. And it will
be! Without any further fuss we make the

Definition. The mapping ¢: R — R’ of the ring R into the ring R’ is a
homomorphism if

(a) ¢(a+ b) = ¢(a) + ¢(b) and
(b) @(ab) = ¢(a)e(b) for alla, b € R.
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Since a ring has two operations, it is only natural and just that we de-
mand that both these operations be preserved under what we would call a
ring homomorphism. Furthermore, Property (a) in the Definition tells us that
¢ is a homomorphism of R viewed merely as an abelian group under + into
R' (also viewed as a group under its addition). So we can call on, and expect,
certain results from this fact alone.

Just as we saw in Chapter 2, Section 5 for groups, the image of R under
a homomorphism from R to R’, is a subring of R’, as defined in Chapter 4,
Section 1 (Prove!).

Let ¢:R — R’ be a ring homomorphism and let Ker¢ =
{x € R| ¢(x) = 0}, the 0 being that of R’. What properties does Ker ¢ enjoy?
Clearly, from group theory Ker ¢ is an additive subgroup of R. But much
more is true. If kK € Ker ¢ and r € R, then ¢(k) = 0, so ¢(kr) = @(k)¢p(r) =
O¢(r) = 0, and similarly, ¢(rk) = 0. So Ker ¢ swallows up multiplication
from the left and the right by arbitrary ring elements.

This property of Ker ¢ is now abstracted to define the important analog
in ring theory of the notion of normal subgroup in group theory.

Definition. Let R be a ring. A nonempty subset / of R is called an
ideal of R if:

(a) Iis an additive subgroup of R.
(b) Givenr€ R,a€ I, thenra € [ and ar € I.

We shall soon see some examples of homomorphisms and ideals. But
first we note that Part (b) in the definition of ideal really has a left and a right
part. We could split it and define a set L of R to be a left ideal of R if L is an
additive subgroup of R and given r € R, a € L, then ra € L. So we require
only left swallowing-up for a left ideal. We can similarly define right ideals.
An ideal as we defined it is both a left and a right ideal of R. By all rights we
should then call what we called an ideal a two-sided ideal of R. Indeed, in
working in noncommutative ring theory one uses this name; here, by “ideal”
we shall always mean a two-sided ideal. Except for some of the problems, we
shall not use the notion of one-sided ideals in this chapter.

Before going on, we record what was done above for Ker ¢ as

Lemma 4.3.1. If ¢: R — R’ is a homomorphism, then Ker ¢ is an
ideal of R.

We shall soon see that every ideal can be made the kernel of a homo-
morphism. Shades of what happens for normal subgroups of groups!
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Finally, let K be an ideal of R. Since K is an additive subgroup of R, the
quotient group R/K exists; it is merely the set of all cosets a + K as a runs
over R. But R is not just a group; it is, after all, a ring. Nor is K merely an ad-
ditive subgroup of R; it is more than that, namely an ideal of R. We should
be able to put all this together to make of R/K a ring.

How should we define a product in R/K in a natural way? What do we
want to declare (a + K)(b + K) to be? The reasonable thing is to define
(a + K)(b + K) = ab + K, which we do. As always, the first thing that
comes up is to show that this product is well-defined. Is it? We must show
thatifa+ K=a'+ Kandb+ K=b'+ K,then(a + K)(b + K) =ab + K =
a'b’ + K= (a' + K)(b' + K). However,ifa+ K=a' + K,thena — a’' € K,
so (a — a')b € K, since K is an ideal of R (in fact, so far, since K is a right
ideal of R). Because b + K =b' + K,we have b — b' € K,soa'(b — b') €E K,
since K is an ideal of R (in fact, since K is a left ideal of R). So both (a — a')b =
ab—a'banda’'(b —b')=a'b—a'b' arein K. Thus (ab — a'b) + (a’'b — a'b’) =
ab—a'b’ € K.

But this tells us (just from group theory) thatab + K = a'b’ + K, ex-
actly what we needed to have the product well-defined.

So R/K is now endowed with a sum and a product. Furthermore, the
mapping ¢ : R — R/K defined by ¢(a) = a + K for a € R is a homomor-
phism of R onto R/K with kernel K. (Prove!) This tells us right away that
R/K is a ring, being the homomorphic image of the ring R.

We summarize all this in

Theorem 4.3.2. Let K be an ideal of R. Then the quotient group R/K
as an additive group is a ring under the multiplication (@ + K)(b + K) =
ab + K. Furthermore, the map ¢: R — R/K defined by ¢(a) = a + K fora € R
is a homomorphism of R onto R/K having K as its kernel. So R/K is a homo-
morphic image of R.

Just from group-theoretic consideration of R as an additive group, we
have that if ¢ is a homomorphism of R into R’, then it is 1-1 if and only if
Ker ¢ = (0). As in groups, we define a homomorphism to be a monomor-
phism if it is 1-1. A monomorphism which is also onto is called an isomor-
phism. We define R and R’ to be isomorphic if there is an isomorphism of R
onto R'.

An isomorphism from a ring R onto itself is called an automorphism of
R. For example, suppose R is the field C of complex numbers. Then the map-
ping from C to C sending each element of C to its complex conjugate is an
automorphism of C. (Prove!)
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One would have to be an awful pessimist to expect that the homomor-
phism theorems proved in Section 7 of Chapter 2 fail in this setting. In fact
they do hold, with the slightly obvious adaptation needed to make the proofs
go through. We state the homomorphism theorems without any further ado,
leaving the few details needed to complete the proofs to the reader.

Theorem 4.3.3 (First Homomorphism Theorem). Let the mapping
¢: R — R’ be a homomorphism of R onto R’ with kernel K. Then R’ = R/K
in fact, the mapping : R/K — R’ defined by (a + K) = ¢(a) defines an
isomorphism of R/K onto R’'.

Theorem 4.3.4 (Correspondence Theorem). Let the mapping ¢: R — R’
be a homomorphism of R onto R’ with kernel K. If I’ is an ideal of R’, let
I={a € R|¢(a) EI'). Then Iis an ideal of R, I O K and I/K = I'. This sets
up a 1-1 correspondence between all the ideals of R’ and those ideals of R
that contain K.

Theorem 4.3.5 (Second Homomorphism Theorem). Let A be a sub-
ring of aring R and 7 an ideal of R. Then A + I={a+ ila€ A, iEI}isa
subring of R, /isanideal of A + I, and (A + 1)/ = A/(A N ).

Theorem 4.3.6 (Third Homomorphism Theorem). Let the mapping
¢: R — R’ be a homomorphism of R onto R’ with kernel K. If I’ is an ideal
of R"and I = {a € R| ¢(a) € I'}, then R/I = R'/I'. Equivalently, if K is an
ideal of R and I O K is an ideal of R, then R/I = (R/K)/(I/K).

We close this section with an inspection of some of the things we have
discussed in some examples.

Examples

1. As usual we use Z, the ring of integers, for our first example. Let n > 1 be
a fixed integer and let 7, be the set of all multiples of »n; then I, is an ideal of
Z.1f Z, is the integers mod n, define ¢:Z — Z, by ¢(a) = [a]. As is easily
seen, ¢ i1s a homomorphism of Z onto Z, with kernel /,. So by Theorem
43.3,Z, = Z/I,. (This should come as no surprise, for that is how we origi-
nally introduced Z,,.)

2. Let F be a field; what can the ideals of F be? Suppose that 7 # (0) is an
ideal of F; let a # 0 € I. Then, since [ is an ideal of F, 1 = a"la € I; but
now, since 1 € I, r1 = r € I for every r € F. In short, I = F. So F has only
the trivial ideals (0) and F itself.

3. Let R be the ring of all rational numbers having odd denominators in their
reduced form. Let I be those elements of R which in reduced form have an
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even numerator; it is easy to see that / is an ideal of R. Define ¢ : R — Z,, the
integers mod 2, by ¢(a/b) = 0 if a is even (a, b have no common factor) and
¢(a/b) = 1 if a 1s odd. We leave it to the reader to verify that ¢ is a homo-
morphism of R onto Z, with kernel 1. Thus Z, = R/I. Give the explicit iso-
morphism of R/I onto Z,.

4. Let R be the ring of all rational numbers whose denominators (when in re-
duced form) are not divisible by p, p a fixed prime. Let I be those elements in
R whose numerator is divisible by p; I'is an ideal of R and R/I = Z,,, the inte-
gers mod p. (Prove!)

5. Let R be the ring of all real-valued continuous functions on the closed unit
interval where (f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x) for f, g € R,
x € [0,1]. Let I = {f € R|f(3) = 0}. We claim that I is an ideal of R.
Clearly, it is an additive subgroup. Furthermore if f € I and g € R, then
fG) =0,s0(fg)3) = f(3)g(G) = 0g(3) = 0. Thus fg € I; since I is commuta-
tive, gfis also in 1. So [ is an ideal of R.

What is R/I? Given any f € R, then

fx) = (f(x) = f@) + &) = 8(x) + fG),

where g(x) = f(x) — f(3). Because g(3) = f(z) — f(3) =0, gis in 1. So
g+I=LThusf+I=(f(3)+g) +1=/f()+ I Because f(3) is just a real
number, R/I consists of the cosets @ + I for « real. We claim that every real
a comes up. For if f(3) = B # 0, then

B+ 1= (o + D(f+ D) = (@B + DG + D)
=@+ )(B+D=af B+ I=a+]

So R/I conmsists of all @ + I, a real. Thus we have shown directly that R/I is
isomorphic to the real field.

We now use Theorem 4.3.3 to show that R/I = real field. Let ¢: R - R
be defined by ¢(f) = f(3). Then it is easy to verify that ¢ is a homomor-
phism, ¢ is onto and Ker ¢ = {f € R| f(3) = 0}; in other words, Ker ¢ = 1I.
So R/I = image of ¢ = R.

6. Let R be the integral quaternions, in other words, R = {a, + a;i + a,j +
ask | ay, @y, a,, a; € Z}. For a fixed prime p, let

I, ={ag + ayi + a,j + ask € R| pla; fori =0,1,2,3}.

The reader should verify that /, is an ideal of R and that R/I, = H(Z,) (see
Problem 36 of Section 1 and the paragraph before it).
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7.Let R = {(“ b)
0 a

reals.

-

an ideal of R? Consider

a,b e IR}; R is a subring of the 2 X 2 matrices over the

b e R}; I is easily seen to be an additive subgroup of R. Is it
x y\(0 b)_ (0 xb),
0 x/\0 O 0 0)
0 b\(x y\_ (0 bx
0 0/\O x 0O 0)

so it, too, is in 1. So I is an ideal of R. What is R/I? We approach it from two

points of view.

Given (g Z)ER,

then (g Z) = (8 2) + (8 8) so that
a b _f{a O 0 b _f(a O
6 o)+ 1=(( o)+ (o 0)) 1= )=

a
0

so it is in /. Similarly,

since (8 (b)) is in 1. Thus all the cosets of 7 in R look like ( 2) + 1. If we map

a

0
onto the real field. So R/I = R.

this onto a, that is, ¢ (( 2) + I) = a, we can check that i is an isomorphism

We see that R/l = R another way. Define ¢: R —> R byqo(g Z) = a. We

claim that ¢ is a homomorphism. For, given (8 z>, (8 f), then

a b — 4 c d — .
¢0a ,¢0C b
ab+cd_a+c b+d
0 a 0 ¢/ 0 a+c)’
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and (@ b\(c d\ _ (ac ad + bc), hence
0 a/\0 ¢ 0 ac ’
ab+cd _ a+c b+d
P1\0 4 0 ¢ \ o a-+c
=a+c=qo<g z)+¢<(c) f)
nd a b\(fc d _ ac ad + bc
a Plo allo ¢ o ac
— e = a b c d
?t0 /%0 ¢/

So ¢ is indeed a homomorphism of R onto R. What is Ker ¢ ? If (g Z) € Ker ¢,

a b\ _ a b\ _ , . a b
then <p(0 a)—a,butalsm;o(() a)—O,smce (0 a)EKergo.

Thus a = 0. From this we see that I = Ker ¢. So R/l = image of ¢ = R by
Theorem 4.3.3.

_ a b
8.LetR—{(_b a)

Define y: R — C by w(_

a,be [R} and let C be the field of complex numbers.

Z 2) = a + bi. We leave it to the reader to verify that

 1s an 1somorphism of R onto C. So R is isomorphic to the field of complex
numbers.

9. Let R be any commutative ring with 1. If a € R, let (a) = {xa|x € R}. We
claim that (a) is an ideal of R. To see this, suppose that u, v € (a); thus
u = xa,v = ya for some x, y € R, whence

urtv=xaxya=(x*ty)ac€ (a).

Also, if u € (a) and r € R, then u = xa, hence ru = r(xa) = (rx)a, so is in (a).
Thus (a) is an ideal of R.

Note that if R is not commutative, then (a) need not be an ideal; but it
is certainly a left ideal of R.
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PROBLEMS

Easier Problems

1.

*3.

L ®e S

10.
11.

13.
14.
15.

16.

17.

If R is a commutative ring and a € R, let L(a) = {x € R | xa = 0}. Prove
that L(a) is an ideal of R.

If R is a commutative ring with 1 and R has no ideals other than (0) and
itself, prove that R is a field. (Hint: Look at Example 9.)

If ¢: R — R’ is a homomorphism of R onto R’ and R has a unit element,
1, show that ¢(1) is the unit element of R'.

If I, J are ideals of R, define I + Jby I + J = {i +j|i € I, j € J}. Prove
that I + J is an ideal of R.

If 7 is an ideal of R and A is a subring of R, show that / N A is an ideal of A.
If 1, J are ideals of R, show that 7 N J is an ideal of R.

Give a complete proof of Theorem 4.3.2.

Give a complete proof of Theorem 4.3.4.

Let ¢ : R — R’ be a homomorphism of R onto R’ with kernel K. If A" is
asubring of R',let A = {a € R| ¢(a) € A'}. Show that:

(a) Aisasubringof R, A D K.

(b) AIK=A".

(¢) If A’ 1s a left ideal of R’, then A is a left ideal of R.

Prove Theorem 4.3.6.

In Example 3, give the explicit isomorphism of R/ onto Z,.

In Example 4, show that R/ = Z,,.

In Example 6, show that R/I, = H(Z,).

In Example 8, verify that the mapping  given is an isomorphism of R onto C.

If 7, J are ideals of R, let 1J be the set of all sums of elements of the form
ij, where i € I, j € J. Prove that 1J is an ideal of R.

Show that the ring of 2 X 2 matrices over the reals has nontrivial left
ideals (and also nontrivial right ideals).

Prove Theorem 4.3.5.

If R, S are rings, define the direct sum of R and S, R @ S, by
R®S ={(r,s)|[reR,sES)
where (r, s) = (ry, s1) if and only if r = r;, s = 5, and where

(r,s) + (Ltu) = (r +t,s +u), (r,s)u)=(rtsu).
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18. Show that R @ S is a ring and that the subrings {(r, 0)|r € R} and
{(0, 5) | s € S} are ideals of R @ § isomorphic to R and S, respectively.

_|fa b _1{0 b
19. IfR—{(O c) a,b,creal}andl—{(o 0)

(a) Ris aring.
(b) /1is an ideal of R.
(¢) R/l = F® F, where Fis the field of real numbers.

20. If 1, J are ideals of R, let R, = R/ and R, = R/J. Show that ¢: R > R, ® R,
defined by ¢(r) = (r + I, r + J) is a homomorphism of R into R; @ R,
such that Ker o =1 N J.

21. Let Z;5 be the ring of integers mod 15. Show that Z,;; = Z, @ Z;.

b real}, show that:

Middle-Level Problems

22. Let Z be the ring of integers and m, n two relatively prime integers, /,,
the multiples of m in Z, and 7, the multiples of n in Z.
(a) WhatisI,, N 1,?
(b) Use the result of Problem 20 to show that there is a one-to-one
homomorphism from Z/1,,, to Z/1,, ® Z/1,.

23. If m, n are relatively prime, prove that 7,,, = Z,, @ Z,. (Hint: Use a count-
ing argument to show that the homomorphism of Problem 22(b) is onto.)

+24, Use the result of Problem 23 to prove the Chinese Remainder Theorem,
which asserts that if m and n are relatively prime integers and a, b any in-
tegers, we can find an integer x such that x = ¢ mod m and x = b mod n
simultaneously.
25. Let R be the ring of 2 X 2 matrices over the real numbers; suppose that /
is an ideal of R. Show that / = (0) or / = R. (Contrast this with the result of
Problem 16.)

Harder Problems

26. Let R be a ring with 1 and let S be the ring of 2 X 2 matrices over R. If /
is an ideal of S show that there is an ideal J of R such that I consists of all
the 2 X 2 matrices over J.

27. If py, p,,..., p, are distinct odd primes, show that there are exactly 2"
solutions of x> = x mod(p, - - - p,), where 0 = x <p,---p,.

28. Suppose that R is a ring whose only left ideals are (0) and R itself. Prove
that either R is a division ring or R has p elements, p a prime, and ab = 0
for everya, b € R.



148 Ring Theory Ch. 4

29. Let R be a ring with 1. An element a € R is said to have a left inverse if
ba = 1 for some b € R. Show that if the left inverse b of a is unique, then
ab = 1 (so b is also a right inverse of a).

4. MAXIMAL IDEALS

This will be a section with one major theorem. The importance of this result
will only become fully transparent when we discuss fields in Chapter 5. How-
ever, it is a result that stands on its own two feet. It isn’t difficult to prove,
but in mathematics the correlation between difficult and important isn’t al-
ways that high. There are many difficult results that are of very little interest
and of even less importance, and some easy results that are crucial. Of
course, there are some results—many, many—which are of incredible diffi-
culty and importance.

Lemma 4.4.1. Let R be a commutative ring with unit whose only
ideals are (0) and itself. Then R is a field.

Proof. Let a # 0 be in R. Then (a) = {xa|x € R} is an ideal of R, as
we verified in Example 9 in the preceding section. Since a = 1a € (a), (a) # (0).
Thus, by our hypothesis on R, (a) = R. But then, by the definition of (a),
every element i € R is a multiple xa of a for some x € R. In particular, be-
cause 1 € R, 1 = ba for some b € R. This shows that a has the inverse b in R.
So R is a field. []

In Theorem 4.3.4—the Correspondence Theorem—we saw that if
¢: R — R’ is a homomorphism of R onto R’ with kernel K, then there is a
1-1 correspondence between ideals of R’ and ideals of R that contain K. Sup-
pose that there are no ideals other than K itself and R which contain K.
What does this imply about R'? Since (0) in R’ corresponds to K in R, and
R’ corresponds to all of R, we must conclude that in this case R’ has no
ideals other than (0) and itself. So if R’ is commutative and has a unit ele-
ment, then, by Lemma 4.4.1, R’ must be a field.

This prompts the following definition.

Definition. A proper ideal M of R is a maximal ideal of R if the only
ideals of R that contain M are M itself and R.

The discussion preceding this definition has already almost proved
for us
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Theorem 4.4.2. Let R be a commutative ring with 1, and let M be a
maximal ideal of R. Then R/M is a field.

Proof. There is a homomorphism of R onto R’ = R/M, and since 1 € R
we have that R’ has 1 + M as its unit element. (See Problem 3, Section 3).
Because M is a maximal ideal of R, we saw in the discussion above that R’
has no nontrivial ideals. Thus, by Lemma 4.4.1, R' = R/M is a field. [

This theorem will be our entry into the discussion of fields, for it will
enable us to construct particularly desirable fields whenever we shall need
them.

Theorem 4.4.2 has a converse. This is

Theorem 4.4.3. If R is a commutative ring with 1 and M an ideal of R
such that R/M is a field, then M is a maximal ideal of R.

Proof. We saw in Example 2 of Section 3 that the only ideals in a field
F are (0) and F itself. Since R/M is a field, it has only (0) and itself as ideals.
But then, by the correspondence given us by Theorem 4.3.4, there can be no
ideal of R property between M and R. Thus M is a maximal ideal of R. []

We give a few examples of maximal ideals in commutative rings.

Examples

1. Let Z be the integers and M an ideal of Z. As an ideal of Z we certainly
have that M is an additive subgroup of Z, so must consist of all multiples of
some fixed integer n. Thus since R/M = Z, and since Z, is a field if and only
if n is a prime, we see that M is a maximal ideal of Z if and only if M consists
of all the multiples of some prime p. Thus the set of maximal ideals in Z cor-
responds to the set of prime numbers.

2. Let Z be the integers, and let R = {a + bi|a, b € Z}, a subring of
C (i* = —1). Let M be the set of all @ + bi in R, where 3 |a and 3 | b. We
leave it to the reader to verify that M is an ideal of R.

We claim that M is a maximal ideal of R. For suppose that N O M and
N # M is an ideal of R. So there is an element r + si € N, where 3 does not
divide r or 3 does not divide s. Therefore, 3/ (r? + s?). (Prove using congru-
encesmod 3 !) But ¢t = r* + s> = (r + si)(r — si), sois in N, since r + si € N
and N is an ideal of R. So N has an integer t = r* + s? not divisible by 3. Thus
ut + 3v = 1 for some integers u, v;butt € N, henceut € Nand3 € M C N,
so 3v € N. Therefore, 1 = ut + 3v € N. Therefore, (a + bi)l € N, since N is
an ideal of R, for all a + bi € R. This tells us that N = R. So the only ideal of
R above M is R itself. Consequently, M is a maximal ideal of R.
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By Theorem 4.4.2 we know that R/M is a field. It can be shown (see
Problem 2) that R/M is a field having nine elements.

3. Let R be as in Example 2 and let I = {a + bi| 5|a and 5|b}. We assert that
I is not a maximal ideal of R.

In R we can factor 5= (2 + )2 —i).Let M = {x(2+ ) |x ER}. M is
an ideal of R, and since 5 = (2 + i)(2 — i) is in M, we see that I C M. Clearly,
I+ Mfor2 + i € M and is not in [ because 5/2. So I # M. Can M = R?
If so, then (2 + i)(a + bi) = 1 for some a, b. This gives 2a — b = 1 and
2b + a = 0; these two equations imply that 5a = 2,s0a = 2, b = —%. But
27, —L:&7 theelementa + bi=2 — %i isnotin R. So M +# R.

One can show, however, that M is a maximal ideal of R. (See Problem 3.)

4. LetR = {a + bV2|a,b integers}, which is a subring of the real field under
the sum and product of real numbers. That R is a ring follows from

(@a+bV2)+ (c+dV2)=@+c)+ (b +d)V2
and
(a + b\/?t)(c +dV2) = (ac + 2bd) + (ad + bc)V2.

Let M = {a + bV2 € R | 5|a and 5|b}. M is easily seen to be an ideal of R.
We leave it to the reader to show that M is a maximal ideal of R and that
R/M is a field having 25 elements.

5. Let R be the ring of all real-valued continuous functions on the closed
unit interval [0, 1]. We showed in Example 5 of Section 3 that if M =
{f € R|f(3) =0}, then M is an ideal of R and R/M is isomorphic to the real
field. Thus, by Theorem 4.4.3, M is a maximal ideal of R.

Of course, if we let M, = {f € R| f(y) = 0}, where y € [0, 1], then M, is
also a maximal ideal. It can be shown that every maximal ideal in R is of the
form M, for some y € [0, 1], but to prove it we would require some results from
real variable theory.

What this example shows is that the maximal ideals in R correspond to
the points of [0, 1].

PROBLEMS

1. If a, b are integers and 3} a or 3/ b, show that 3/ (a*> + b?).
2. Show that in Example 2, R/M is a field having nine elements.
3. In Example 3, show that M = {x(2 + i) | x € R} is a maximal ideal of R.
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In Example 3, show that R/M = Z;.

In Example 3, show that R/I = Zs ® Zs.

In Example 4, show that M is a maximal ideal of R.

In Example 4, show that R/M is a field having 25 elements.

® N2 ;oA

Using Example 2 as a model, construct a field having 49 elements.

We make a short excursion back to congruences mod p, where p is an odd
prime. If a is an integer such that p [ a and x> = a mod p has a solution x in Z,
we say that a is a quadratic residue mod p. Otherwise, a is said to be a quadratic
nonresidue mod p.

9. Show that (p — 1)/2 of the numbers 1, 2, ... , p — 1 are quadratic
residues and (p — 1)/2 are quadratic nonresidues mod p. [Hint: Show
that {x*|x # 0 € Z,} forms a group of order (p — 1)/2.]

10. Let m > 0 be in Z, and suppose that m is not a square in Z. Let R =
{a + \/Eb| a,b € Z}. Prove that under the operations of sum and
product of real numbers R is a ring.

11. If p is an odd prime, let us set I, = {a +\/n_1b} pla and p|b}, where
a + Vm b € R, the ring in Problem 10. Show that 7, is an ideal of R.

12. If m is a quadratic nonresidue mod p, show that the ideal /, in Problem
11 is a maximal ideal of R.

13. In Problem 12 show that R/], is a field having p? elements.

5. POLYNOMIAL RINGS

The material that we consider in this section involves the notion of polyno-
mial and the set of all polynomials over a given field. We hope that most
readers will have some familiarity with the notion of polynomial from their
high school days and will have seen some of the things one does with polyno-
mials: factoring them, looking for their roots, dividing one by another to get
a remainder, and so on. The emphasis we shall give to the concept and alge-
braic object known as a polynomial ring will be in a quite different direction
from that given in high school.

Be that as it may, what we shall strive to do here is to introduce the
ring of polynomials over a field and show that this ring is amenable to a care-
ful dissection that reveals its innermost structure. As we shall see, this ring is
very well-behaved. The development should remind us of what was done for
the ring of integers in Section 5 of Chapter 1. Thus we shall run into the ana-
log of Euclid’s algorithm, greatest common divisor, divisibility, and possibly
most important, the appropriate analog of prime number. This will lead to
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unique factorization of a general polynomial into these “prime polyno-
mials,” and to the nature of the ideals and the maximal ideals in this new
setting.

But the polynomial ring enjoys one feature that the ring of integers did
not: the notion of a root of a polynomial. The study of the nature of such
roots—which will be done, for the most part, in the next chapter—consti-
tutes a large and important part of the algebraic history of the past. It goes
under the title Theory of Equations, and in its honorable past, a large variety
of magnificent results have been obtained in this area. Hopefully, we shall
see some of these as our development progresses.

With this sketchy outline of what we intend to do out of the way, we
now get down to the nitty-gritty of doing it.

Let F be a field. By the ring of polynomials in x over F, which we shall
always write as F[x], we mean the set of all formal expressions p(x) =

ag+ ax + -+ a,_x" ' + a,x", n =0, where the a;, the coefficients of
the polynomial p(x), are in F. We sometimes employ the alternative nota-
tion: p(x) = apx™ + a;x" ! + - -+ + a,. In F[x] we define équality, sum, and

product of two polynomials so as to make of F[x] a commutative ring as fol-
lows:

1. Equality. We declare p(x) = ay + a;x + -+ + a,x" and gq(x) =
by + bix + -+ + b,x" to be equal if and only if their corresponding coeffi-
cients are equal, that is, if and only if a; = b; for all i = 0.

We combine this definition of equality of polynomials p(x) and g(x)
with the convention that if

n

q(x) = by, + bpx + --- + b,x

andif b,,,; =--- = b, =0, then we can drop the last n — m terms and write
q(x) as

q(x) = by + byx + -+ + b, x".

This convention is observed in the definition of addition that follows,
where s is the larger of m and » and we add coefficientsa,,; =---=a,=0
if n<sorb,.,,=--=b,=01if m<s.

2. Addition. If p(x) = ay + a;x + --+ + a,x" and q(x) = by + bix
+ -+ + b,,x™, we declare p(x) + g(x) = ¢y + c;x + -+ + ¢,x°, where for
eachi,c; = a; + b;.

So we add polynomials by adding their corresponding coefficients.

The definition of multiplication is a little more complicated. We define
it loosely at first and then more precisely.
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3. Multiplication. If p(x) = ay + a;x + --- + a,x" and q(x) =
by + byx +---+ b, x™, we declare p(x)q(x) = cy + ¢;x + -+ + c,x', where
the c; are determined by multiplying the expression out formally, using the
distributive laws and the rules of exponents x“x’ = x“*', and collecting
terms. More formally,

¢, =aby,+a_by+ -+ ab,_, + ab; foreveryi.

We illustrate these operations with a simple example, but first a nota-
tional device: If some coefficient is 0, we just omit that term. Thus we write
9 4+ Ox + 7x2 + 0x> — 14x* as 9 + 7x? — 14x*.

Let p(x) =1 + 3x% q(x) = 4 — 5x + 7x* — x>. Then p(x) + q(x) =
5 — 5x + 10x? — x> while

p(x)q(x) = (1 + 3x*)(4 — 5x + Tx* — x°)
=4 — S5x + Tx* — x* + 3x*(4 — 5x + Ix* — X°)
=4 — Sx + Tx?> — x>+ 12x% — 152 + 21x* — 3x°
=4 — 5x + 19x% — 16x> + 21x* — 3x°.

Try this product using the c; as given above.

In some sense this definition of F[x] is not a definition at all. We have
indulged in some hand waving in it. But it will do. We could employ se-
quences to formally define F[x] more precisely, but it would merely cloud
what to most readers is well known.

The first remark that we make—and do not verify—is that F[x] is a
commutative ring. To go through the details of checking the axioms for a
commutative ring is a straightforward but laborious task. However, it is im-
portant to note

Lemma 4.5.1. F|[x] is a commutative ring with unit.

Definition. If p(x) = a, + aix + --+ + a,x" and a, # 0, then the
degree of p(x), denoted by deg p(x), is n.

So the degree of a polynomial p(x) is the highest power of x that occurs in
the expression for p(x) with a nonzero coefficient. Thus deg(x — x* + x*) = 4,
deg(7x) = 1, deg 7 = 0. (Note that this definition does not assign a degree to
0. It is, however, sometimes convenient to adopt the convention that the de-
gree of 0 be —oo, in which case many degree related results will hold in this
extended context.) The polynomials of degree 0 and the polynomial O are
called the constants; thus the set of constants can be identified with F.

The degree function on F[x] will play a similar role to that played by
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the size of the integers in Z, in that it will provide us with a version of Eu-
clid’s Algorithm for F[x].

One immediate and important property of the degree function is that it
behaves well for products.

Lemma 4.5.2. If p(x), q(x) are nonzero elements of F[x], then
deg(p(x)q(x)) = degp(x) + degq(x).

Proof. Let m = deg p(x) and n = deg g(x); thus the polynomial p(x) =
a + ax + --- + a,x", where a,, # 0, and the polynomial g(x) = b, +
bix + ---+ b,x", where b, # 0. The highest power of x that can occur in
p(x)g(x) is x™*", from our definition of the product. What is the coefficient
of x”*"? The only way that x"™*" can occur is from (a,x™)(b,x") =
a,b,x™". So the coefficient of x™*" in p(x)q(x) is a,,b,, which is not 0, since
a, # 0, b, # 0. Thus deg(p(x)q(x)) = m + n = degp(x) + degq(x), as
claimed in the lemma. ]

One also has some information about deg(p(x) + g(x)). This is

Lemma 4.5.3. If p(x), g(x) € F[x] and p(x) + q(x) # 0, then
deg(p(x) + q(x)) = max(deg p(x), deg q(x)).

We leave the proof of Lemma 4.5.3 to the reader. It will play no role in
what is to come, whereas Lemma 4.5.2 will be important. We put it in so that
the “+” should not feel slighted vis-a-vis the product.

An immediate consequence of Lemma 4.5.2 is

Lemma 4.5.4. F[x] is an integral domain.

Proof. If p(x) # 0 and q(x) # 0O, then degp(x) = 0, deg g(x) = 0, so
deg(p(x)q(x)) = deg p(x) + deg q(x) = 0. Therefore, p(x)g(x) has a degree,
so cannot be 0 (which has no degree assigned to it). Thus F[x] is an integral
domain. []

One of the things that we were once forced to learn was to divide
one polynomial by another. How did we do this? The process was
called long division. We illustrate with an example how this was done,
for what we do in the example is the model of what we shall do in the gen-
eral case.

We want to divide 2x2 + 1 into x* — 7x + 1. We do it schematically as
follows:
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and we interpret this as:
xf=Tx+1=02x*+ D)Ex*— 1) + (=7x + 3)

and —7x + 2 is called the remainder in this division.

What exactly did we do? First, where did the 3x* come from? It came
from the fact that when we multiply 2x* + 1 by 3x2 we get x*, the highest
power occurring in x* — 7x + 1. So subtracting 3 x*(2x*> + 1) from x* — 7x + 1
gets rid of the x* term and we go on to what is left and repeat the procedure.

This “repeat the procedure” suggests induction, and that is how we
shall carry out the proof. But keep in mind that all we shall be doing is what
we did in the example above.

What this gives us is something like Euclid’s Algorithm, in the integers.
However, here we call it the Division Algorithm.

Theorem 4.5.5 (Division Algorithm). Given the polynomials f(x),
g(x) € F|x], where g(x) # 0, then

fx) = q(x)g(x) + r(x),
where g(x), r(x) € F[x] and r(x) = 0 or deg r(x) < deg g(x).

Proof. We go by induction on deg f(x). If either f(x) = 0 or deg f(x) <
deg g(x), then f(x) = Og(x) + f(x), which satisfies the conclusion of the
theorem.

So suppose that deg f(x) = deg g(x); thus the polynomial f(x) =
a,tax+---+a,x", where a, # 0 and the polynomial g(x) = b, + bx
+---+ b,x", where b, # 0 and where m = n.

Consider
am m—n am m—n n
5 * g(x)=3—x (bg + byx + - - - + b,x")

ab
————’1’7’ Oxm—n 4 ... + a, x™.
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Thus (a,,/b,)x™ "g(x) has the same degree and same leading coefficient as does
f(x), so f(x) — (a,,/b,)x™ "g(x) = h(x) is such that the relation deg h(x) <
deg f(x) holds. Thus, by induction,

h(x) = q:(x)g(x) + r(x), where g¢,(x),r(x) € F[x]

and r(x) = 0 or deg r(x) < deg g(x). Remembering what A (x) is, we get

h(x) = f(x) = G278 (x) = qi(0g(x) + r(x)
SO

fx) = (Z—’" x4 ql(x))g(x) + r(x).

If g(x) = (a,/b,)x™ " + q,(x), we have achieved the form claimed in the
theorem. []

The Division Algorithm has one immediate application: It allows us to
determine the nature of all the ideals of F[x]. As we see in the next theorem,
an ideal of F[x] must merely consist of all multiples, by elements of F[x], of
some fixed polynomial.

Theorem 4.5.6. If I + (0) is an ideal of F[x], then I = {f(x)g(x) | f(x) €
F[x]}; that is, I consists of all multiples of the fixed polynomial g(x) by the el-
ements of F[x].

Proof. To prove the theorem, we need to produce that fixed polyno-
mial g(x). Where are we going to dig it up? The one control we have numeri-
cally on a given polynomial is its degree. So why not use the degree function
as the mechanism for finding g(x)?

Since I # (0) there are elements in / having nonnegative degree. So
there is a polynomial g(x) # 0 in / of minimal degree; that is, g(x) # O is in /
and if 0 # #(x) € I, then deg ¢(x) = deg g(x). Thus, by the division algorithm,
t(x) = q(x)g(x) + r(x), where r(x) = 0 or deg r(x) < deg g(x). But since
g(x) € I and I is an ideal of F[x], we have that g(x)g(x) € I. By assumption,
t(x) € I, thus t(x) — q(x)g(x) is in 1, so r(x) = t(x) — q(x)g(x) is in I. Since
g(x) has minimal degree for the elements of 7 and r(x) € I, deg r(x) cannot
be less than deg g(x). So we are left with (x) = 0. But this says that #(x) =
q(x)g(x). So every element in / is a multiple of g(x). On the other hand,
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since g(x) € I and [ is an ideal of F[x], f(x)g(x) € I for all f(x) € F[x]. The
net result of all this is that I = {f(x)g(x) | f(x) € F[x]}. O

Definition. An integral domain R is called a principal ideal domain if
every ideal I in R is of the form I = {xa | x € R} for some a € I.

Theorem 4.5.6 can be stated as: F|[x] is a principal ideal domain.

We shall write the ideal generated by a given polynomial, g(x), namely
{f(x)g(x) | f(x) € Flx]}, as (g(x)).

The proof showed that if / is an ideal of F[x], then I = (g(x)), where
g(x) 1s a polynomial of lowest degree contained in /. But g(x) is not unique, for
if a # 0 € F, then ag(x) is in / and has the same degree as g(x), so I = (ag(x)).

To get some sort of uniqueness in all this, we single out a class of poly-
nomials.

Definition. f(x) € F[x] is a monic polynomial if the coefficient of its
highest power is 1.

Thus f(x) is monic means that
fx)=x"+a, x" '+ - +ax+ a,.

We leave to the reader to show that if / is an ideal of F[x], then there is
only one monic polynomial of lowest degree in /. Singling this out as the gen-
erator of 7 does give us a “monic” uniqueness for the generation of /.

Our next step in this parallel development with what happens in the in-
tegers is to have the notion of one polynomial dividing another.

Definition. Suppose f(x), g(x) € F[x], with g(x) # 0. We say that
g(x) divides f(x), written as g(x) | f(x), if f(x) = a(x)g(x) for some a(x) €
Fl[x].

Note that if f(x) # 0 and g(x) | f(x), then deg g(x) < deg f(x) by Lemma
4.5.2. Moreover, the ideals (f(x)) and (g(x)) of F[x], generated by f(x) and
g(x), respectively, satisfy the containing relation (f(x)) C (g(x)). (Prove!)

We again emphasize the parallelism between Z, the integers, and F[x]
by turning to the notion of greatest common divisor. In order to get some sort
of uniqueness, we shall insist that the greatest common divisor always be a
monic polynomial.
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Definition. For any two polynomials f(x) and g(x) € F[x] (not both 0),
the polynomial d(x) € F[x] is the greatest common divisor of f(x), g(x) if
d(x) is a monic polynomial such that:

(a) d(x)|f(x)and d(x) | g(x).
(b) If h(x) | f(x) and A(x) | g(x), then A(x) | d(x).

Although we defined the greatest common divisor of two polynomials,
we neither know, as yet, that it exists, nor what its form may be. We could
define it in another, and equivalent, way as the monic polynomial of highest
degree that divides both f(x) and g(x). If we did that, its existence would be
automatic, but we would not know its form.

Theorem 4.5.7. Given f(x) and g(x) # 0 in F[x], then their greatest
common divisor d(x) € F[x] exists; moreover, d(x) = a(x) f(x) + b(x)g(x)
for some a(x), b(x) € Flx].

Proof. Let I be the set of all r(x)f(x) + s(x)g(x) as r(x), s(x) run
freely over F[x]. We claim that 7 is an ideal of R. For,

(r()f (x) + 51(x)g(x)) + (rx)f (x) + sx(x)g(x))
= (r(x) + r())f (x) + (s1(x) + 52(x))g(x),

so is again in /, and for ¢(x) € F[x],

t(x)(r(x)f (x) + s(x)g(x)) = (t(x)r(x))f (x) + (£(x)s(x))g(x),

so it, too, is again in /. Thus 7 is an ideal of F[x]. Since g(x) # 0, we know
that / # 0, since both f(x) and g(x) are in I.

Since I # 0 is an ideal of F[x], it is generated by a unique monic polyno-
mial d(x) (Theorem 4.5.6). Since f(x), g(x) are in /, they must then be multi-
ples of d(x) by elements of F[x]. This assures us that d(x)|f(x) and
d(x) | g(x).

Because d(x) € I and [ is the set of all r(x)f(x) + s(x)g(x), we have
that d(x) = a(x)f(x) + b(x)g(x) for some appropriate a(x), b(x) € F[x].
Thus if A(x) | f(x) and A(x) | g(x), then h(x) | (a(x)f(x) + b(x)g(x)) = d(x).
So d(x) is the greatest common divisor of f(x) and g(x).

This proves the theorem; the uniqueness of d(x) is guaranteed by the
demand that we have made that the greatest common divisor be monic. []

Another way to see the uniqueness of d(x) is from

Lemma 4.5.8. If f(x) # 0, g(x) # 0 are in F[x] and f(x)|g(x) and
g(x) | f(x), then f(x) = ag(x), where a € F.
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Proof. By the mutual divisibility condition on f(x) and g(x) we have,
by Lemma 4.5.2, deg f(x) < deg g(x) = deg f(x), so deg f(x) = deg g(x). But

f(x) = a(x)g(x), so
deg f(x) = deg a(x) + deg g(x) = dega(x) + deg f(x),

in consequence of which deg a(x) = 0, so a(x) = a, an element of F. []

We leave the proof of the uniqueness of the greatest common divisor
via Lemma 4.5.8 to the reader.

Definition. The polynomials f(x), g(x) in F[x] are said to be relatively
prime if their greatest common divisor is 1.

Although it is merely a very special case of Theorem 4.5.7, to empha-
size it and to have it to refer to, we state:

Theorem 4.59. If f(x), g(x) € F[x] are relatively prime, then
a(x)f(x) + b(x)g(x) = 1 for some a(x), b(x) € F[x]. Conversely, if
a(x)f(x) + b(x)g(x) = 1 for some a(x), b(x) € F[x], then f(x) and g(x) are
relatively prime.

Proof. We leave this “conversely” part to the reader as exercise. []
As with the integers, we have

Theorem 4.5.10. If g(x) and f(x) are relatively prime and if
q(x) | f(x)g(x), then g(x) | g(x).

Proof. By Theorem 4.5.9 a(x)f(x) + b(x)q(x) = 1 for some a(x),
b(x) € F[x]. Therefore,

a(x)f (x)g(x) + b(x)q(x)g(x) = g(x). (1)

Since g(x) | b(x)g(x)q(x) and g(x) | f(x)g(x) by hypothesis, g(x) divides the
left-hand side of the relation in (1). Thus g(x) divides the right-hand side
of (1), that is, g(x) | g(x), the desired conclusion. []

We are now ready to single out the important class of polynomials that
will play the same role as prime objects in F[x] as did the prime numbers in Z.

Definition. The polynomial p(x) € F[x] is irreducible if p (x) is of pos-
itive degree and given any polynomial f(x) in F[x], then either p(x) | f(x) or
p(x) is relatively prime to f(x).
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We should note here that the definition implies that a polynomial p(x)
of positive degree is irreducible in F[x] if and only if p(x) cannot be factored
as a product of two polynomials of positive degree. In other words, if p(x) =
a(x)b(x), where a(x) and b(x) are in F[x], then either a(x) is a constant (that
is, an element of F), or b(x) is constant. The proof of this fact is very similar
to the proof of an analogous observation concerning two equivalent defini-
tions of a prime number.

First suppose that p(x) (of positive degree) cannot be factored as a
product of two non-constant polynomials. Then, given any f(x) in F[x], we
have only two possibilities for (p(x), f(x)), namely 1 or a monic polynomial of
the form c-p(x), where c is an element of F. Thus (p(x), f(x)) = 1 or p(x) | f(x),
which shows that p(x) is irreducible.

Now let p(x) be irreducible in F[x] and suppose p(x) = a(x)b(x) for
some a(x), b(x) in F[x]. According to the definition, we must have
p(x) | a(x) or (p(x), a(x)) = 1. If p(x) | a(x), then b(x) must be a constant. If,
on the other hand, p(x) and a(x) are relatively prime, then by Theorem
4.5.10, p(x) | b(x), and in this case a(x) must be a constant. This shows that an
irreducible polynomial cannot be factored as a product of two non—constant
polynomials.

Note that the irreducibility of a polynomial depends on the field F. For
instance, the polynomial x> — 2 is irreducible in Q[x], where Q is the field of
rational numbers, but x> — 2 is not irreducible in R[x], where R is the field of
real numbers, for in R[x]

X2 —2=(x—-V2)(x + V2).

Corollary to Theorem 4.5.10. If p(x) is irreducible in F[x] and
p(x) | a;(x)ay(x) - - - ap(x), where a,(x), ..., a,(x) are in F[x], then p(x) | a;(x)
for some i.

Proof. We leave the proof to the reader. (See Theorem 1.5.6.) [

Aside from its other properties, an irreducible polynomial p(x) in F[x]
enjoys the property that (p(x)), the ideal generated by p(x) in F[x], is a max-
imal ideal of F[x]. We prove this now.

Theorem 4.5.11. If p(x) € F[x], then the ideal (p(x)) generated by
p(x) in F[x] is a maximal ideal of F[x] if and only if p(x) is irreducible in F[x].

Proof. We first prove that if p(x) is irreducible in F[x], then the ideal
M = (p(x)) is a maximal ideal of F[x]. For, suppose that N is an ideal of
F[x], and N D M. By Theorem 4.5.6,
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N = (f(x)) forsome f(x)€ Flx].

Because p(x) € M C N, p(x) = a(x)f(x), since every element in N is of this
form. But p(x) is irreducible in F[x], hence a(x) is a constant or f(x) is a con-
stant. If a(x) = a € F, then p(x) = af(x), so f(x) = a 'p(x). Thus f(x) € M,
which says that N C M, hence N = M. On the other hand, if f(x) = b € F,
then 1 = b™'b € N, since N is an ideal of F[x], thus g(x)1 € N for all
g(x) € F|[x]. This says that N = F[x]. Therefore, we have shown M to be a
maximal ideal of F[x].

In the other direction, suppose that M = (p(x)) is a maximal ideal of
F[x]. If p(x) is not irreducible, then p(x) = a(x)b(x), where dega(x) = 1,
deg b(x) = 1. Let N = (a(x)); then, since p(x) = a(x)b(x), p(x) € N. There-
fore, M C N. Since deg a(x) = 1, N = (a(x)) # F|[x], since every element in
(a(x)) has degree at least that of a(x). By the maximality of M we conclude
that M = N. But then a(x) € N = M, which tells us that a(x) = f(x)p(x);
combined with p(x) = a(x)b(x) = b(x)f(x)p(x), we get that b(x)f(x) = 1.
Since deg 1 = 0 < deg b(x) = deg(b(x)f(x)) = deg 1 = 0, we have reached a
contradiction. Thus p(x) is irreducible. []

This theorem is important because it tells us exactly what the maximal
ideals of F[x] are, namely the ideals generated by the irreducible polynomi-
als. If M is a maximal ideal of F[x], F[x]/M is a field, and this field contains
F (or more precisely, the field {a + M |a € F}, which is isomorphic to F).
This allows us to construct decent fields K O F, the decency of which lies in
that p(x) has a root in K. The exact statement and explanation of this we
postpone until Chapter 5.

The last topic in this direction that we want to discuss is the factoriza-
tion of a given polynomial as a product of irreducible ones. Note that if
p(x)=apx" +ax"'+---+a,x + a,, ay # 0, is irreducible in F[x], then
so is ag'p(x) irreducible in F[x]; however, a;'p(x) has the advantage of
being monic. So we have this monic irreducible polynomial trivially obtain-
able from p (x) itself. This will allow us to make more precise the uniqueness
part of the next theorem.

Theorem 4.5.12. Let f(x) € F[x] be of positive degree. Then either
f(x) is irreducible in F[x] or f(x) is the product of irreducible polynomials in
F[x]. In fact, then,

f(x) = api(x)™po(x)™2 « - - pi(x)™,

where a is the leading coefficient of f(x), p(x), ..., px(x) are monic and ir-
reducible in F[x], m; > 0, ... , m; > 0 and this factorization in this form is
unique up to the order of the p,(x).



162 Ring Theory Ch. 4

Proof. We first show the first half of the theorem, namely that f(x) is
irreducible or the product of irreducibles. The proof is exactly the same as
that of Theorem 1.5.7, with a slight, obvious adjustment.

We go by induction on deg f(x). If deg f(x) = 1, then f(x) = ax + b
with a # 0 and is clearly irreducible in F[x]. So the result is true in this case.

Suppose, then, that the theorem is correct for all a(x) € F[x] such that
deg a(x) < deg f(x). If f(x) is irreducible, then we have nothing to prove.
Otherwise, f(x) = a(x)b(x), a(x) and b(x) € F[x] and dega(x) < deg f(x)
and deg b(x) < deg f(x). By the induction, a(x) [and b(x)] is irreducible or is
the product of irreducibles. But then f(x) is the product of irreducible poly-
nomials in F[x]. This completes the induction, and so proves the opening half
of the theorem.

Now to the uniqueness half. Again we go by induction on deg f(x). If
deg f(x) = 1, then f(x) is irreducible and the uniqueness is clear.

Suppose the result true for polynomials of degree less than deg f(x).
Suppose that

f(x) = api(x)"1p(x)"2 + + - pp(x)™* = aqi(x)"' - - - q,(x)"™,

where the p;(x), q;(x) are monic irreducible polynomials and the m;, n; are
all positive and a is the leading coefficient of f(x), that is, the coefficient
of the highest power term of f(x). Since p,(x)|f(x), we have that
p1(x) | g1(x)" - - - q,(x)™, so by the corollary to Theorem 4.5.10, p,(x) | g;(x)
for some i. Since g;(x) is monic and irreducible, as is p;(x), we get p;(x) =
qi(x). We can suppose (on renumbering) that p,(x) = q(x). Thus

ﬁ(% = apy ()™ Py (X -+ pe(x)™
= ap,(x)"17'gx(x)"2 " - - q(x)™.

By induction we have unique factorization in the required form for
f(x)/pi(x), whose degree is less than deg f(x). Hence we obtain that
m —1=n—1(om; =ny), my=n,, ... ,m,=n,,r=kand p,(x) =
q,(x), ..., p(x) = q(x), on renumbering the g’s appropriately. This com-
pletes the induction and proves the theorem. []

We have pointed out how similar the situation is for the integers Z and
the polynomial ring F [x]. This suggests that there should be a wider class of
rings, of which the two examples Z and F[x] are special cases, for which
much of the argumentation works. It worked for Z and F [x] because we had
a measure of size in them, either by the size of an integer or the degree of a
polynomial. This measure of size was such that it allowed a Euclid-type algo-
rithm to hold.
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This leads us to define a class of rings, the Euclidean rings.

Definition. An integral domain R 1s a Euclidean ring if there is a
function d from the nonzero elements of R to the nonnegative integers that
satisfies:

(a) Fora+#0,b # 0 € R, d(a) = d(ab).
(b) Givena # 0, b # 0, there exist g and r € R such that b = ga + r, where
r=0ord(r) <d(a).

The interested student should try to see which of the results proved for
polynomial rings (and the integers) hold in a general Euclidean ring. Aside
from a few problems involving Euclidean rings, we shall not go any further
with this interesting class of rings.

The final comment we make here is that what we did for polynomials
over a field we could try to do for polynomials over an arbitrary ring. That is,
given any ring R (commutative or noncommutative), we could define the
polynomial ring R[x] in x over R by defining equality, addition, and multipli-
cation exactly as we did in F[x], for F a field. The ring so constructed, R[x], is
a very interesting ring, whose structure is tightly interwoven with that of R it-
self. It would be too much to expect that all, or even any, of the theorems
proved in this section would carry over to R[x] for a general ring R.

PROBLEMS

In the following problems, F will always denote a field.

Easier Problems

1. If F is a field, show that the only invertible elements in F[x] are the
nonzero elements of F.

2. If R is a ring, we introduce the ring R[x] of polynomials in x over R, just as
we did F[x]. Defining deg f(x) for f(x) € R[x] as we did in F[x], show that:
(a) deg(f(x)g(x)) = deg f(x) + degg(x) if f(x)g(x) # 0.

(b) There is a commutative ring R such that we can find f(x), g(x) in
R[x] with deg(f(x)g(x)) < deg f(x) + deg g(x).

3. Find the greatest common divisor of the following polynomials over Q,
the field of rational numbers.
(@) x> —6x+ 7and x + 4.
(b) x> — 1and 2x” — 4x° + 2.
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(¢) 3x2+ 1and x® + x* + x + 1.
d) x*—1andx” —x*+ x*— 1.

4., Prove Lemma 4.5.3.

5. In Problem 3, let I = {f(x)a(x) + g(x)b(x)}, where f(x), g(x) run over
Q[x] and a(x) is the first polynomial and b(x) the second one in each part
of the problem. Find d(x), so that I/ = (d(x)) for Parts (a), (b), (c),
and (d).

6. If g(x), f(x) € F[x] and g(x) | f(x), show that (f(x)) C (g(x)).

7. Prove the uniqueness of the greatest common divisor of two polynomials
in F[x] by using Lemma 4.5.8.

8. If f(x), g(x) € F[x] are relatively prime and f(x) | A(x) and g(x) | h(x),
show that f(x)g(x) | h(x).

9. Prove the Corollary to Theorem 4.5.10.

10. Show that the following polynomials are irreducible over the field F indi-

cated.

(@) x> + 7 over F = real field = R.

(b) x*> — 3x + 3 over F = rational field = Q.
(¢) x>+ x+1over F=17,.

(d) x2+ 1over F=Z,,.

(e) x> —9over F=17,,.

(f) x* +2x* + 2 over F = Q.

11. If p(x) € F[x] is of degree 3 and p(x) = a,x® + a;x? + a,x + a;, show
that p(x) if irreducible over F if there is no element r € F such that
p(r) = ayr* + a;r* + ayr + a; = 0.

12. If F C K are two fields and f(x), g(x) € F[x] are relatively prime in F[x],
show that they are relatively prime in K[x].

Middle-Level Problems

13. Let R be the field of real numbers and C that of complex numbers. Show
that R[x]/(x* + 1) = C. [Hint: If A = R[x]/(x? + 1), let u be the image of
x in A; show that every element in A is of the form a + bu, where
a,b € Rand u? = —1]
14. Let F = Z,,, the integers mod 11.
(a) Let p(x) = x* + 1; show that p(x) is irreducible in F[x] and that
F[x)/(p(x)) is a field having 121 elements.
(b) Let p(x) = x> + x + 4 € F[x]; show that p(x) is irreducible in F[x]
and that F[x]/(p(x)) is a field having 11° elements.
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15.

16.

17.

18.

19.
20.
21.
22.

Let F = Z, be the field of integers mod p, where p is a prime, and let
q(x) € F[x] be irreducible of degree n. Show that F[x]/(q(x)) is a field
having at most p"” elements. (See Problem 16 for a more exact state-
ment.)

Let F, g(x) be as in Problem 15; show that F[x]/(q(x)) has exactly p” ele-
ments.

Let p,(x), p,(x),..., p(x) € F[x] be distinct irreducible polynomials
and let g(x) = p,(x)p,(x) - - - px(x). Show that

Flx] _ _Flx] Flx] o Flx]
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Let F be a finite field. Show that F[x] contains irreducible polynomials of
arbitrarily high degree. (Hint: Try to imitate Euclid’s proof that there is
an infinity of prime numbers.)

Construct a field having p? elements, for p an odd prime.
If R is a Euclidean ring, show that every ideal of R is principal.
If R is a Euclidean ring, show that R has a unit element.

If R is the ring of even integers, show that Euclid’s algorithm is false in R
by exhibiting two even integers for which the algorithm does not hold.

Harder Problems

23.

24.

25.

26.

Let F =7, and let p(x) = x> — 2 and q(x) = x> + 2 be in F[x]. Show
that p(x) and g(x) are irreducible in F[x] and that the fields F[x]/(p(x))
and F[x]/(g(x)) are isomorphic.

Let @ be the field of rational numbers, and let g(x) = x* + x + 1 be in
Q(x). If a is a complex number such that o> + « + 1 = 0, show that the
set {a + ba|a, b € Q} is a field in two ways; the first by showing it to be
isomorphic to something you know is a field, the second by showing that
if a + ba # 0, then its inverse is of the same form.

-1

If p is a prime, show that g(x) =1 + x + x> + --- x?™! is irreducible in

Q[x].
Let R be a commutative ring in which a* = 0 only if @ = 0. Show that if
q(x) € R[x] is a zero-divisor in R[x], then, if

q(x) = agx" + ax"" ' + -+ + a,,

there is an element b # 0 in R such that ba, = ba, = --- = ba, = 0.
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27. Let R be a ring and 7 an ideal of R. If R[x] and I[x] are the polynomial
rings in x over R and I, respectively, show that:
(a) I[x]is an ideal of R[x].
(b) R[x)/I[x] = (R/I)[x].

Very Hard Problems

*28. Do Problem 26 even if the condition “a” = 0 only if @ = 0” does not hold
in R.

29. Let R = {a + bi|a, b integers} C C. Let d(a + bi) = a* + b*. Show that
R is a Euclidean ring where d is its required Euclidean function. (R is
known as the ring of Gaussian integers and plays an important role in
number theory.)

6. POLYNOMIALS OVER THE RATIONALS

In our consideration of the polynomial ring F[x] over a field F, the particular
nature of F never entered the picture. All the results hold for arbitrary fields.
However, there are results that exploit the explicit character of certain fields.
One such field is that of the rational numbers.

We shall present two important theorems for Q[x], the polynomial ring
over the rational field Q. These results depend heavily on the fact that we are
dealing with rational numbers. The first of these, Gauss’ Lemma, relates the
factorization over the rationals with factorization over the integers. The sec-
ond one, known as the FEisenstein Criterion, gives us a method of constructing
irreducible polynomials of arbitrary degree, at will, in @[x]. In this the field Q
is highly particular. For instance, there is no easy algorithm for obtaining irre-
ducible polynomials of arbitrary degree n over the field Z, of the integers
mod p, p a prime. Even over Z, such an algorithm is nonexistent; it would be
highly useful to have, especially for coding theory. But it just doesn’t exist—
so far.

We begin our consideration with two easy results.

Lemma 4.6.1. Let f(x) € Q[x]; then
fix) = %(aox” +ax" '+ - +a)

where u, m, aq, . . ., a, are integers and the a,, a4, ..., a, have no common
factor greater than 1 (i.e., are relatively prime) and (u, m) = 1.
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Proof. Since f(x) € Q[x], f(x) = qox" + ¢;x" ' + -+ + g,, where the
q; are rational numbers. So fori =0, 1, 2,..., n, g; = b;/c;, where b;, c; are
integers. Thus

o

b b
f(x)=c—8x"+c—11x"_1 + 0+ 2y

n

clearing of denominators gives us
— 1 n n—1
f(x) = e C. (upx™ + ux" '+ - -+ +u,),

where the u; are integers. If w is the greatest common divisor of ug, uy, ..., u,,
then each u; = wa;, where ay, a4, . . ., a, are relatively prime integers. Then

w _
f(x) = C()CICZ' © - C, (aoxn + alxn ! + -+ an);

canceling out the greatest common factor of w and cyc; - - - ¢, gives us

u
= — n4+ ... 4+
f(x) = (agx a,),
where u, m are relatively prime integers, as is claimed in the lemma. []

The next result is a result about a particular homomorphic image of
R[x] for any ring R.

Lemma 4.6.2. If R is any ring and / an ideal of R, then /[x], the poly-
nomial ring in x over /, is an ideal of R[x]. Furthermore, R[x]/I[x] = (R/I)[x],
the polynomial ring in x over R/I.

Proof. Let R = R/I; then there is a homomorphism ¢ : R — R, defined
by ¢(a) = a + I, whose kernel is I. Define ® : R[x] — R[x] by: If

f(x) =apx" + ax" '+ -+ +a,,
then
O(f(x)) = e(ag)x™ + e(a)x" ' + -+ + ¢(a,).

We leave it to the reader to prove that ® is a homomorphism of R[x] onto
R[x]. What is the kernel, Ker ®, of ®? If f(x) = apx” + - - - + a,, is in Ker &,
then ®( f(x)) = 0, the 0 element of R [x]. Since

O(f(x)) = @(ag)x" + (a)x" ' + - + ¢(a,) =0,

we conclude ¢(ag) = 0, ¢(a;) =0, ..., ¢(a,) = 0, by the very definition of
what we mean by the 0-polynomial in a polynomial ring. Thus each g; is in
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the kernel of ¢, which happens to be 1. Because ag, a4, ..., a,arein [, f(x) =
apx" + a;x" '+ .-+ + a,isin I[x]. So Ker ® C I[x]. That I[x] C Ker ® is im-
mediate from the definition of the mapping ®. Hence /[x] = Ker ®. By the
First Homomorphism Theorem (Theorem 4.3.3), the ring /[x] is then an
ideal of R[x] and R[x] = R[x]/Ker ® = R[x]/I[x]. This proves the lemma, re-
membering that R = R/I. []

As a very special case of the lemma we have the

Corollary. Let Z be the ring of integers, p a prime number in Z, and
= (p), the ideal of Z generated by p. Then Z[x]/I[x] = Z [x].

Proof. Since Z, = Z/1, the corollary follows by applying the lemma to
R=27.1]

We are ready to prove the first of the two major results we seek in this
section.

Theorem 4.6.3 (Gauss’ Lemma). If f(x) € Z[x] is a monic polynomial
and f(x) = a(x)b(x), where a(x) and b(x) are in Q[x]. Then f(x) =
a,(x)b,(x), where a,(x), b;(x) are monic polynomials in Z[x] and deg a,(x) =
deg a(x), deg b,(x) = deg b(x).

Proof. Suppose that f(x) € Z[x] and that f(x) = a(x)b(x), where a(x),
b(x) € Q[x], and deg a(x) = s, deg b(x) = r. By Lemma 4.6.1, we can ex-
press each of a(x), b(x) as a product of a rational number and a polynomial
with integer coefficients. More precisely,

a(x) = —(aoxs +a/x* '+ - +al)= %al(x),
1
where a, ay, . . ., a; are relatively prime integers and
— _ul I\ T ryr—1 e N — ﬂ
b(x) m, (bgx" + bix"™" + + b)) m, b,(x),
where by, b1, ..., b, are relatively prime. Thus
f(x) = a(x)b(x) = al(X)b (x) = —al(X)bl(x),

where v and w are relatively prime, by canceling out the common factor of
uu, and mym,. Therefore, wf(x) = va,(x)b,(x), and f(x), a,(x), b;(x) are
all in Z[x]. Of course, we may assume with no loss of generality that the lead-
ing coefficients of a;(x) and b,(x) are positive.

If w = 1, then, since f(x) is monic, we get that vagh; = 1 and this leads
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easilytov = 1,a5 = by = 1 and so f(x) = a,(x)b,(x), where both a,(x) and
b,(x) are monic polynomials with integer coefficients. This is precisely the
claim of the theorem, since deg a,(x) = deg a(x) and deg b,(x) = deg b(x).

Suppose then that w # 1; thus there is a prime p such that p | w and,
since (v, w) = 1, p/v. Also, since the coefficients aj, ai,..., a. of a;(x)
are relatively prime, there is an i such that p/[a}; similarly, there is a j
such that p/b;. Let I = (p) be the ideal generated by p in Z; then
ZIl = Z, and, by the Corollary to Lemma 4.6.2, Z[x]/I[x] = Z,[x], so is an in-
tegral domain. However, since p | w, w, the image of w in Z[x]/I[x], is O,
and since pJv, U the image of v in Z[x])/I[x] is not 0. Thus 0f (x) =
v a,(x)b,(x), where v # 0 and @,(x) #0, b,(x) # 0 because p {a}and p | b/ for
the given i, j above. This contradicts that Z[x]/I[x] is an integral domain. So
w # 1 is not possible, and the theorem is proved. []

It might be instructive for the reader to try to show directly that if
x> + 6x — 7 is the product of two polynomials having rational coefficients,
then it is already the product of two monic polynomials with integer coeffi-
cients.

One should say something about C. F. Gauss (1777-1855), considered by many
to be the greatest mathematician ever. His contributions in number theory, al-
gebra, geometry, and so on, are of gigantic proportions. His contributions in
physics and astronomy are also of such a great proportion that he is considered
by physicists as one of their greats, and by the astronomers as one of the impor-
tant astronomers of the past.

As we indicated at the beginning of this section, irreducible polynomi-
als of degree n over a given field F may be very hard to come by. However,
over the rationals, due to the next theorem, these exist in abundance and are
very easy to construct.

Theorem 4.6.4 (The Eisenstein Criterion). Let f(x) = x" + apx"!
+ --- + a, be a nonconstant polynomial with integer coefficients. Suppose
that there is some prime p such thatp |a;,pla,,...,p|a,, but p*fa,. Then
f(x) is irreducible in Q[x].

Proof. Suppose that f(x) = u(x)v(x), where u(x), v(x) are of positive
degree and are polynomials in @[x]. By Gauss’ Lemma we may assume that
both u(x) and v(x) are monic polynomials with integer coefficients. Let
I = (p) be the ideal generated by p in Z, and consider Z[x]/I[x], which is an
integral domain, since we know by the Corollary to Lemma 4.6.2 that
Z[x)/I[x] = (Z/I)[x] = Z,[x]. The image of f(x) = x" + a;x"' + --- + a,in
Z[x)/I[x] is x", since p | a4, ..., p | a,. So if u(x) is the image of u(x) and v(x)
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that of v(x) in Z[x]/I[x], then x" = T(x)v(x). Since #(x)|x", o(x)|x" in Z[x]/I [x],
we must have that #(x) = x",0(x) = x"" for some 1 = r < n. But then
u(x) = x" + pg(x) and v(x) = x"" + ph(x), where g(x) and h(x) are polyno-
mials with integer coefficients. Since u(x)v(x) = x" + px'h(x) + px"'g(x) +
p’g(x)h(x), and since 1 < r < n, the constant term of u(x)v(x) is p°st, where
s is the constant term of g(x) and ¢ the constant term of 4 (x). Because f(x) =
u(x)v(x), their constant terms are equal, hence a, = pst. Since s and ¢ are in-
tegers, we get that p? | a,, a contradiction. In this way we see that f(x) is irre-
ducible. []

We give some examples of the use to which the Eisenstein Criterion
can be put.

[y

. Let f(x) = x" — p, p any prime. Then one sees at a glance that f(x) is
irreducible in Q[x], for the Eisenstein Criterion applies.

2. Let f(x) = x> — 4x + 22. Since 2| 22, 2°} 22 and 2 divides the other rel-
evant coefficients of f(x), the Eisenstein Criterion tells us that f(x) is ir-
reducible in Q[x].

. Let f(x) = x'! — 6x* + 12x3 + 36x — 6. We see that f(x) is irreducible
in Q[x] by using either 2 or 3 to check the conditions of the Eisenstein
Criterion.

4. Let f(x) = 5x* — 7x + 7; f(x) is not monic, but we can modify f(x)

slightly to be in a position where we can apply the Eisenstein Criterion.

Let

(S

g(x) = S*f(x) = 5%* — 7-5% + 7-5° = (5x)* — 175(5x) + 875.

If we let y = 5x, then g(x) = h(y) = y* — 175y + 875. The polynomial
h(y) is irreducible in Z[y] by using the prime 7 and applying the Eisen-
stein Criterion. The irreducibility of #(y) implies that of g(x), and so
that of f(x), in Q[x].

This suggests a slight generalization of the Eisenstein Criterion to
nonmonic polynomials. (See Problem 4.)

5. Let f(x) = x* + x> + x> + x + 1; as it stands we cannot, of course,
apply the Eisenstein Criterion to f(x). We pass to a polynomial g(x)
closely related to f(x) whose irreducibility in Q[x] will ensure that of
fx).Letgx)=fx+ D) =x+1D) ! +x+1)’+x+1)P2+(x+1)+
1 = x* + 5x + 10x* + 10x + 5. The Eisenstein Criterion applies to
g(x), using the prime 5; thus g(x) is irreducible in Q[x]. This implies
that f(x) is irreducible in Q[x]. (See Problem 1.)
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Gotthold Eisenstein (1823-1852) in his short life made fundamental contribu-
tions in algebra and analysis.

PROBLEMS

In Example 5, show that because g(x) is irreducible in Q[x], then so is

f(x).

2. Prove that f(x) = x> + 3x + 2 is irreducible in Q[x].

10.

11.

Show that there is an infinite number of integers a such that f(x) =
x” + 15x? — 30x + a is irreducible in Q[x]. What a’s do you suggest?

Prove the following generalization of the Eisenstein Criterion. Let
f(x) = apgx" + a;x"' + --- + a, have integer coefficients and suppose
that there is a prime p such that

p*a09p|a1’ p,a29""p‘an—la p’ana

but p2/ a,; then f(x) is irreducible in Q[x].

If p is a prime, show that f(x) = x*~! + xP"% + --- + x + 1 is irreducible
in Q[x].

Let F be the field and ¢ an automorphism of F[x] such that ¢(a) = a for
every a € F. If f(x) € F[x], prove that f(x) is irreducible in F[x] if and

only if g(x) = ¢(f(x)) is.
Let F be a field. Define the mapping

¢:Flx] = Flx] by o(f(x)) =f(x+1)

for every f(x) € F[x]. Prove that ¢ is an automorphism of F[x] such that
¢(a) = aforeverya € F.

Let F be a field and b # 0 an element of F. Define the mapping
¢: F[x] = F[x] by ¢(f(x)) = f(bx) for every f(x) € F[x]. Prove that ¢ is
an automorphism of F[x] such that ¢(a) = a for every a € F.

Let F be a field, b # 0, ¢ elements of F. Define the mapping
¢ : F[x] — F[x] by ¢(f(x)) = f(bx + ¢) for every f(x) € F[x]. Prove that
¢ is an automorphism of F[x] such that ¢(a) = a for every a € F.

Let ¢ be an automorphism of F[x], where F is a field, such that ¢(a) = a
for every a € F. Prove that if f(x) € F[x], then deg ¢(f(x)) = deg f(x).
Let ¢ be an automorphism of F[x], where F is a field, such that ¢(a) = a
for every a € F. Prove there exist b # 0, ¢ in F such that ¢(f(x)) =
f(bx + c) for every f(x) € Flx].
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12. Find a nonidentity automorphism ¢ of Q[x] such that ¢ is the identity
automorphism of Q[x].

13. Show that in Problem 12 you do not need the assumption ¢(a) = a for
every a € () because any automorphism of Q[x] automatically satisfies
¢(a) = afor every a € Q.

14. Let C be the field of complex numbers. Given an integer n > 0, exhibit
an automorphism ¢ of C[x] of order n.

7. FIELD OF QUOTIENTS OF AN INTEGRAL DOMAIN

Given the integral domain Z, the ring of integers, then intimately related to Z
is the field Q of rational numbers that consists of all fractions of integers; that
is, all quotients m/n, where m, n # 0 are in Z. Note that there is no unique
way of representing 3, say, in Q because 3 = ¥ = (=7)/(—-14) =---.
In other words, we are identifying 3 with ¥, (—7)/(—14), and so on. This sug-
gests that what is really going on in constructing the rationals from the inte-
gers is some equivalence relation on some set based on the integers.

The relation of Q to Z carries over to any integral domain D. Given an
integral domain D, we shall construct a field F O D whose elements will be
quotients a/b with a, b € D, b # 0. We go through this construction formally.

Let D be an integral domain, and let S = {(a, b) |a, b € D, b # 0}; S is
thus the subset of D X D—the Cartesian product of D with itself—in which
the second component is not allowed to be 0. Think of (a, b) as a/b for a mo-
ment; if so, when would we want to declare that (a, b) = (c, d)? Clearly, we
would want this if a/b = c/d, which in D itself would become ad = bc. With
this as our motivating guide we define a relation ~ on § by declaring:

(a,b) ~ (c,d) for (a, b), (c,d)in S, if and only if ad = bc.

We first assert that this defines an equivalence relation on S. We go
through the three requirements for an equivalence relation term by term.

1. (a, b) ~ (a, b), for clearly ab = ba (since D is commutative). So ~ is
reflexive.

2. (a, b) ~ (c, d) implies that (c, d) ~ (a, b), for (a, b) ~ (c, d) means
ad = bc; for (c, d) ~ (a, b) we need cb = da, but this is true, since
c¢b = bc = ad = da. So ~ is symmetric.

3. (a,b) ~ (c, d), (c,d) ~ (e, f) implies that ad = bc, cf = de, so adf =
bcf = bde; but d # 0 and we are in an integral domain, hence af =
be follows. This says that (a, b) ~ (e, f). So the relation is transitive.
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We have shown that ~ defines an equivalence relation on S. Let F be
the set of all the equivalence classes [a, b] of the elements (a, b) € S. Fis our
required field.

To show that F is a field, we must endow it with an addition and multi-
plication. First the addition; what should it be? Forgetting all the fancy talk
about equivalence relation and the like, we really want [a, b] to be a/b. If so,
what should [a, b] + [c, d] be other than the formally calculated

_ad+bc?

<
d bd

a
B"‘

This motivates us to define
[a, b] + [c,d] = [ad + bc, bd]. (1)

Note that since b # 0, d # 0 and D i1s a domain, then bd # 0, hence
[ad + bc, bd] is a legitimate element of F.

As usual we are plagued with having to show that the addition so de-
fined in F is well-defined. In other words, we must show that if [a, b] =
[a’,b'] and [c, d] = [¢', d'], then [a, b] + [c,d] = [a’, b'] + [¢’, d']. From (1)
we must thus show that [ad + bc, bd] = [a'd’ + b'c’, b'd’], which is to say,
(ad + bc)b'd’ = bd(a'd’ + b'c’). Since [a, b] = [a’, b'] and [c, d] = [¢', d'],
ab’ = ba' and cd' = dc'. Therefore, (ad + bc)b'd’ = ab'dd’ + bb'cd' =
ba'dd' + bb' dc' = (a'd' + b'c')bd, as required. Thus “+” is well-defined in F.

The class [0, b], b # 0, acts as the 0 under “+,” we denote it simply as 0,
and the class [—a, b] is the negative of [a, b]. To see that this makes of F an
abelian group is easy, but laborious, for all that really needs verification is
the associative law.

Now to the multiplication in F. Again motivated by thinking of [a, b] as
alb, we define

[a, b][c, d] = [ac, bd]. (2)

Again since b # 0, d # 0, we have bd # 0, so the element [ac, bd] is
also a legitimate element of F.

As for the “+” we must show that the product so introduced is well-de-
fined; that is, if [a, b] = [a', b'], [c,d] = [c’, d'], then

(4, b][c, d] = [ac, bd] = [a’c’,b'd"] = [a’,b"][c’, d"].

We know that ab’ = ba’ and cd’' = dc',so acb'd’ = ab’cd’ = ba'dc’ = bda’c’,
which is exactly what we need for [ac, bd] = [a'c’, b'd’]. Thus the product is
well-defined in F.

What acts as 1 in F? We claim that for anya # 0, b # O in D, [a, a] =
[b, b] (since ab = ba) and [c, d][a, a] = [ca, da] = [c, d], since (ca)d = (da)c.
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So [a, a] acts as 1, and we write it simply as 1 = [a, a] (for all a # 0 in D).
Given [a, b] # 0, then a # 0, so [b, a] is in F; hence, because [a, b][b, a] =
[ab, ba] = [ab, ab] = 1, [a, b] has an inverse in F. All that remains to show
that the nonzero elements of F form an abelian group under this product is
the associative law and commutative law. We leave these to the reader.

To clinch that F is a field, we need only now show the distributive law.
But [ad + bc, bd][e, f] = [(ad + bc)e, bdf], so

([a, b] + [c,d]))le, f] = [ade + bce, bdf],
while

[a, blle, f] + [c, d]le, f]
= [ae, bf] + [ce, df ] = [aedf + bfce, bdf?]
= [(ade + bce) f, bdf?*] = [ade + bce, bdf ][ f, f]
= [ade + bce, bdf],

which we have seen is ([a, b] + [c, d])[e, f]. The distributive law is now es-
tablished, so F'is a field.

Let a # 0 be a fixed element in D and consider [da, a] for any d € D.
The map ¢:d — [da, a] is a monomorphism of D into F. It is certainly 1-1,
for if ¢(d) = [da, a] = 0, then da = 0, so d = 0, since D is an integral do-
main. Also, ¢(d,d,) = [did,a, a] while ¢(d|)e(d;) = [d,a, a][d,a, a] =
[dd,a?, @] = [d d,a, a][a, a] = [d d,a, a] = ¢(d,d,). Furthermore,

[d,a,a] + [dya,a] = [d,a* + a°d,, a*]
= [dia + dya,a][a, q]
= [(dl + dZ) a, a]

30 ¢(d; + dy) = [(d, + dy)a, a] = [da, a] + [d,a, a] = ¢(d,) + ¢(d,). Thus
¢ maps D monomorphically into F. So, D is isomorphic to a subring of F, and
we can thus consider D as “embedded” in F. We consider every element
[a, b] of F as the fraction a/b.

Theorem 4.7.1. Let D be an integral domain. Then there exists a field
F O D which consists of all fractions a/b, as defined above, of elements in D.

The field F is called the field of quotients of D. When D = Z, then F is
isomorphic to the field Q of rational numbers. Also, if D is the domain of
even integers, then F is also the entire field Q.

What we did above in constructing the field of quotients of D was a
long, formal, wordy, and probably dull way of doing something that is by its
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nature something very simple. We really are doing nothing more than form-
ing all formal fractions a/b, a, b # 0 in D, where we add and multiply frac-
tions as usual. However, it is sometimes necessary to see something done to
its last detail, painful though it may be. Most of us had never seen a really
formal and precise construction of the rationals from the integers. Now
that we have constructed F from D in this formal manner, forget the de-
tails and think of F as the set of all fractions of elements of D.

PROBLEMS

1. Prove the associative law of addition in F.
2. Prove the commutative law of addition in F.
3. Prove that the product in F is commutative and associative.

4. If K is any field that contains D, show that K D F. (So F is the smallest
field that contains D.)



5

FIELDS

The notion of a ring was unfamiliar territory for most of us; that of a field
touches more closely on our experience. While the only ring, other than a
field, that we might have seen in our early training was the ring of integers,
we had a bit more experience working with rational numbers, real numbers,
and, some of us, complex numbers, in solving linear and quadratic equations.
The ability to divide by nonzero elements gave us a bit of leeway, which we
might not have had with the integers, in solving a variety of problems.

So at first glance, when we start working with fields we feel that we are
on home ground. As we penetrate deeper into the subject, we start running
across new ideas and new areas of results. Once again we’ll be in unfamiliar
territory, but hopefully, after some exposure to the topic, the notions will be-
come natural to us.

Fields play an important role in geometry, in the theory of equations,
and in certain very important parts of number theory. We shall touch upon
each of these aspects as we progress. Unfortunately, because of the technical
machinery we would need to develop, we do not go into Galois theory, a very
beautiful part of the subject. We hope that many of the readers will make con-
tact with Galois theory, and beyond, in their subsequent mathematical training.

1. EXAMPLES OF FIELDS
Let’s recall that a field F is a commutative ring with unit element 1 such that for

every nonzero a € F there is an element a~! € F such that aa™! = 1. In other
words, fields are “something like” the rationals Q. But are they really? The in-

176
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tegers mod p, Z,, where p is a prime, form a field; in Z, we have the relation

pl=14+1+---+1=0
(p times)

Nothing akin to this happens in Q). There are even sharper differences
among fields—how polynomials factor over them, special properties of which
we’ll see in some examples, and so on.

We begin with some familiar examples.

Examples

—

. @, the field of rational numbers.

2. R, the field of real numbers.

3. C, the field of complex numbers.

4. Let F={a + bi|a, b € Q} C C. To see that F is a field is relatively easy.

We only verify that if a + bi # O is in F, then (a + bi)~!is also in F. But
what is (a + bi)~'? It is merely

a _ bi
(@*> + b*) (a* + b?)

(verify!),

and since a* + b* # 0 and is rational, therefore a/(a* + b?) and also
b/(a® + b?*) are rational, hence (a + bi)”!is indeed in F.

5. Let F={a + bV2|a, b € Q} C R. Again the verification that F is a field
is not too hard. Here, too, we only show the existence of inverses in F for
the nonzero elements of F. Suppose that a + bV2 # 0is in F; then, since
\/2 is irrational, @® — 2b* # 0. Because

(a + bV2)(a — bV?2) = a* — 2b?,

we see that (a + bV2)(a/c — V2 bic) = 1, where ¢ = a> — 2b?. The re-
quired inverse for a + bV2 is ajc — V2 blc, which is certainly an ele-
ment of F, since a/c and b/c are rational.

6. Let F be any field and let F[x] be the ring of polynomials in x over F.
Since F[x] is an integral domain, it has a field of quotients according to
Theorem 4.7.1, which consists of all quotients f(x)/g(x), where f(x) and
g(x) are in F[x] and g(x) # 0. This field of quotients of F[x] is denoted by
F(x) and is called the field of rational functions in x over F.

7. Z,, the integers modulo the prime p, is a (finite) field.

8. In Example 2 in Section 4 of Chapter 4 we saw how to construct a field
having nine elements.

These eight examples are specific ones. Using the theorems we
have proved earlier, we have some general constructions of fields.
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9. If D is any integeral domain, then it has a field of quotients, by Theorem
4.7.1, which consists of all the fractions a/b, where a and b are in D and
b # 0.

10. If R is a commutative ring with unit element 1 and M is a maximal ideal
of R, then Theorem 4.4.2 tells us that R/M is a field.

This last example, for particular R’s, will play an important role in what
is to follow in this chapter.

We could go on, especially with special cases of Examples 9 and 10, to
see more examples. But the 10 that we did see above show us a certain vari-
ety of fields, and we see that it is not too hard to run across fields.

In Examples 7 and 8 the fields are finite. If F is a finite field having g el-
ements, viewing F merely as an abelian group under its addition, “+,” we
have, by Theorem 2.4.5, that gx = 0 for every x € F. This is a behavior quite
distinct from that which happens in the fields that we are used to, such as the
rationals and reals.

We single out this kind of behavior in the

Definition. A field F is said to have (or, to be of) characteristicp # 0
if for some positive integer p, px = 0 for all x € F, and no positive integer
smaller than p enjoys this property.

If a field F is not of characteristic p # 0 for any positive integer p, we
call it a field of characteristic 0. So Q, R, C are fields of characteristic 0, while
Z5 is of characteristic 3.

In the definition given above the use of the letter p for the characteris-
tic is highly suggestive, for we have always used p to denote a prime. In fact,
as we see in the next theorem, this usage of p is consistent.

Theorem 5.1.1. The characteristic of a field is either 0 or a prime
number.

Proof. If the field F has characteristic 0, there is nothing more to say.
Suppose then that mx = 0 for all x € F, where m is a positive integer. Let p
be the smallest positive integer such that px = 0 for all x € F. We claim that
p is a prime. For if p = uv, where u > 1 and v > 1 are integers, then in F,
(u1)(vl) = (uv)l = 0, where 1 is the unit element of F. But F, being a field, is
an integral domain (Problem 1); therefore, u1 = 0 or v1 = 0. In either case
we get that 0 = (u1)(x) = ux [or, similarly, 0 = (v1)x = vx] for any x in F.
But this contradicts our choice of p as the smallest integer with this property.
Hence p is a prime. []
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Note that we did not use the full force of the assumption that F was a

field. We only needed that F was an integral domain (with 1). So if we define
the characteristic of an integral domain to be 0 or the smallest positive inte-
ger p such that px = 0 for all x € F, we obtain the same result. Thus the

Corollary. If D is an integral domain, then its characteristic is either 0

or a prime number.

1.
2.
3.

PROBLEMS

Show that a field is an integral domain.

Prove the Corollary even if D does not have a unit element.

Given a ring R, let S = R[x] be the ring of polynomials in x over R, and

let T = S[y] be the ring of polynomials in y over S. Show that:

(a) Any element f(x, y) in T has the form EZai}-xiyf, where the a;; are
in R.

(b) In terms of the form of f(x, y) in T given in Part (a), give the condi-
tion for the equality of two elements f(x, y) and g(x, y) in 7.

(¢c) In terms of the form for f(x, y) in Part (a), give the formula for
f(x, y) + g(x,y), for f(x,y), g(x,y) in T

(d) Give the form for the product of f(x, y) and g(x, y) if f(x, y) and
g(x, y) are in T. (T is called the ring of polynomials in two variables
over R, and is denoted by R[x, y].)

If D is an integral domain, show that D[x, y] is an integral domain.

If Fis a field and D = F|x, y], the field of quotients of D is called the

field of rational functions in two variables over F, and is usually denoted

by F(x, y). Give the form of the typical element of F(x, y).

Prove that F(x, y) is isomorphic to F(y, x).

If F is a field of characteristic p # 0, show that (a + b)? = a? + b? for all

a, b € F. (Hint: Use the binomial theorem and the fact that p is a prime.)

If Fis a field of characteristic p # 0, show that (a + b)" = a™ + b",

where m = p”, for all a, b in F and any positive integer n.

Let F be a field of characteristic p # 0 and let ¢ : F — F be defined by

¢(a) = a” foralla € F.

(a) Show that ¢ defines a monomorphism of F into itself.

(b) Give an example of a field F where ¢ is not onto. (Very hard.)

10. If F is a finite field of characteristic p, show that the mapping ¢ defined

above is onto, hence is an automorphism of F.



180 Fields Ch.5

2. A BRIEF EXCURSION INTO VECTOR SPACES

To get into the things we should like to do in field theory, we need some
technical equipment that we do not have as yet. This concerns the relation of
two fields K D F and what we would like to consider as some measure of the
size of K compared to that of F. This size i1s what we shall call the dimension
or degree of K over F.

However, in these considerations, much less is needed of K than that it
be a field. We would be remiss if we proved these results only for the special
context of two fields K D F because the same ideas, proofs, and spirit hold in
a far wider situation. We need the notion of a vector space over a field F.
Aside from the fact that what we do in vector spaces will be important in our
situation of fields, the ideas developed appear in all parts of mathematics.
Students of algebra must see these things at some stage of their training. An
appropriate place is right here.

Definition. A vector space V over a field F is an abelian group under
“+” such that for every « € F and every v € V there is an element av € V,
and such that:

1. a(v; + vy) = avy + av,, fora € F,v;,v, €E V.

2. (a+ B =av + Bv,fore,BEF,vEV.

3. a(Bv) = (aB)v,fora,BE F,vE V.

4. 1v =vforallv € V, where 1 is the unit element of F.

In discussing vector spaces—which we will do very briefly—we shall
use lowercase Latin letters for elements of V and lowercase Greek letters for
elements of F.

Our basic concern here will be with only one aspect of the theory of vec-
tor spaces: the notion of the dimension of V over F. We shall develop this no-
tion as expeditiously as possible, not necessarily in the best or most elegant
way. We would strongly advise the readers to see the other sides of what is
done in vector spaces in other books on algebra or linear algebra (for instance,
our books A Primer on Linear Algebra and Matrix Theory and Linear Algebra).

Before getting down to some results, we look at some examples. We
leave to the reader the details of verifying, in each case, that the example
really is an example of a vector space.

Examples

1. Let F be any field and let V = {(ay, a5, . . ., a,) | @; € F for all i} be the set
of n-tuples over F, with equality and addition defined component-wise. For
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v = (aj, a,..., a,) and B € F, define Bv by Bv = (Ba,, Ba,, ..., Ba,).
V' is a vector space over F.

2. Let F be any field and let V = F[x] be the ring of polynomials in x over F.
Forgetting the product of any arbitrary elements of F[x] but using only that
of a polynomial by a constant, for example, we find that

B(ao + alx + £t + anxn) = Bao + Balx + - + Banxn.
In this way V becomes a vector space over F.

3. Let V be as in Example 2 and let W = { f(x) € V| deg(f(x)) = n}. Then W
is a vector space over F, and W C V is a subspace of V in the following sense.

Definition. A subspace of a vector space V is a nonempty subset W of
Vsuch that ew € Wand w; + w, € Wiorallain Fand w, w;, w, € W.

Note that the definition of subspace W of V implies that W is a vector
space whose operations are just those of V restricted to the elements of W.

4. Let V be the set of all real-valued differentiable functions on [0, 1], the
closed unit interval, with the usual addition and multiplication of a function
by a real number. Then V is a vector space over R.

5. Let W be all the real-valued continuous functions on [0, 1], again with the
usual addition and multiplication of a function by a real number. W, too, is a
vector space over R, and the V in Example 4 is a subspace of W.

6. Let F be any field, F[x] the ring of polynomials in x over F. Let f(x)
be in F[x] and J = (f(x)) the ideal of F[x] generated by f(x). Let V =
F[x]/], where we define a(g(x) + J) = ag(x) + J. V is then a vector space
over F.

7. Let R be the real field and let V be the set of all solutions to the differen-
tial equation d*y/dx? + y = 0. V is a vector space over R.

8. Let V be any vector space over a field F, v, v,,..., v, elements of V. Let
(U1, Vgyoooy Uy) = v, + aquy, + -+ + av,| oy, ay, ..., a, € F}). Then
(vy, vy, ..., U,) is a vector space over F and is a subspace of V. This subspace
(vy, Uy, ..., V,)Is called the subspace of V generated or spanned by v,, ..., v,
over F; its elements are called linear combinations of v, ..., v,. We shall
soon have a great deal to say about (v, v,, ..., V,).

9. Let V and W be vector spaces over the field F and let V @ W =
{(v, w)|v € V, w € W}, with equality and addition defined componentwise,
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and where a(v, w) = (av, aw). Then V @ W is easily seen to be a vector
space over F; it is called the direct sum of V and W.

10. Let K D F be two fields, where the addition “+” is that of K and where
av, for « € Fand v € K is the product, as elements of the field K. Then Con-
ditions 1 and 2 defining a vector space are merely special cases of the distrib-
utive laws that hold in K, and Condition 3 is merely a consequence of the
associativity of the product in K. Finally, Condition 4 is just the restate-
ment of the fact that 1 is the unit element of K. So K is a vector space
over F.

In one respect there is a sharp difference among these examples. We
specify this difference by examining some of these examples in turn.

1. In Example 1, if
v, = (1,0,...,0),v, =(0,1,0,...,0),...,v, = (0,0,...,1),

then every element v in V has a unique representation in the form v =

av, + -+ ayu,, where ay,..., a, are in F.

2. In Example 3,ifv; = 1,v,=1x, ... ,v;,=x""!, ... ,v,.1 = x", then every
v € V has a unique representation as v = av; + - -+ + a,U,, with the q;
in F.

3. In Example 7, every solution of d*y/dx®> + y = 0 is of the unique form
y = acosx + Bsin x, with « and B real.

4. In Example 8, every v € (vy, ..., v,) has a representation—albeit not nec-
essarily unique—as v = a;v; + -+ + a,v, from the very definition of
(vy, - - ., U,). Uniqueness of this representation depends heavily on the ele-
ments vq,...,U,.

5. In the special case of Example 10, where K = C, the field of complex
numbers, and F = R that of the real numbers, then every v € C is of the
unique formv = a + Bi, a, B € R.

6. Consider K = F(x) D F, the field of rational functions in x over F. We
claim—and leave to the reader—that we cannot find any finite set of ele-
ments in K which spans K over F. This phenomenon was also true in some
of the other examples we gave of vector spaces.

The whole focus of our attention here will be on this notion of a vector
space having some finite subset that spans it over the base field.

Before starting this discussion, we must first dispose of a list of formal
properties that hold in a vector space. You, dear reader, are by now so
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sophisticated in dealing with these formal, abstract things that we leave the
proof of the next lemma to you.

Lemma 5.2.1. If V is a vector space over the field F, then, for every
a € Fandeveryv € V-
(a) a0 = 0, where 0 is the zero-element of V.
(b) Ov = 0, where the first O is the zero in F.
(¢) av = 0 implies that « = 0 orv = 0.

(d) (—)v = —(av).

In view of this lemma we shall not run into any confusion if we use the
symbol 0 both for the zero of F and that of V.

We forget vector spaces for a moment and look at solutions of certain
systems of linear equations in fields. Take, for example, the two linear homo-
geneous equations with real coefficients, x; + x, + x; = 0 and 3x; — x, + x3
= (. We easily see that for any x;, x; such that 4x;, + 2x; = 0 and x, =
—(x; + x3), we get a solution to this system. In fact, there exists an infinity of
solutions to this system other than the trivial one x; = 0, x, = 0, x; = 0. If we
look at this example and ask ourselves: “Why is there an infinity of solutions
to this system of linear equations?”, we quickly come to the conclusion that,
because there are more variables than equations, we have room to maneuver
to produce solutions. This is exactly the situation that holds more generally,
as we see below.

Definition. Let F be a field; then the n-tuple (B, ..., B,), where the
B; are in F, and not all of them are 0, is said to be a nontrivial solution in F to
the system of homogeneous linear equations

allxl + a12x2 + ¢t + aln xn = O
a21x1 + a22x2 + - + a2n xn = O
(*) . . . e . = O
ailxl + aizxz + et + ainxn = O
arlxl + arzxz + - + arnxn = 0
where the «;; are all in F, if substituting x; = B;, ... , x, = B, satisfies all

the equations of (*).

For such a system (*) we have the following
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Theorem 5.2.2. If n > r, that is, if the number of variables (un-
knowns) exceeds the number of equations in (*), then (*) has a nontrivial so-
lution in F.

Proof. The method is that, which some of us learned in high school, of
solving simultaneous equations by eliminating one of the unknowns and at
the same time cutting the number of equations down by one.

We proceed by induction on r, the number of equations. If r = 1, the
system (*) reduces to a;;x; + -+ + ay,x, = 0, and n > 1. If all the «; = 0,

then x;, = x, = --- = x,, = 1 is a nontrivial solution to (*). So, on renumber-
ing, we may assume that a;; # 0; we then have the solution to (*), which is
nontrivial: x, = ---=x, = land x; = —(Va; ) (a;; + -+ + ay,).

Suppose that the result is correct for r = k for some k and suppose that
(*) is a system of k + 1 linear homogeneous equations in n > k + 1 vari-
ables. As above, we may assume that some «;; # 0, and, without loss of gen-
erality, that a;; # 0.

We construct a related system, (**), of k linear homogeneous equations
in n — 1 variables; since n > k + 1, we have that n — 1 > k, so we can apply
induction to this new system (**). How do we get this new system? We want
to eliminate x; among the equations. We do so by subtracting «;/a; times
the first equation from the ith one for each of i = 2, 3,..., k + 1. In doing
so, we end up with the new system of k linear homogeneous equations in
n — 1 variables:

B X, + 0+ Brax, =0

Bax X, + -+ Bsux, =0
(**)

.3k+1,2x2 + -+ Bk+1,nxn =0,

WhereB”: aij— ail/allfori=2,3,...,k+1andj=2,3,...,n.
Since (**) is a system of k linear homogeneous equations in n — 1 vari-

ables and n — 1 > k, by our induction (**) has a nontrivial solution (7y,, ..., v,)
in F. Let y; = — (a7, + -+ + a3,Y,)/a;11; We leave it to the reader to verify
that the (v, v,,..., v,) so obtained is a required nontrivial solution to (*).

This completes the induction and so proves the theorem. []

With this result established, we are free to use it in our study of vector
spaces. We now return to these spaces. We repeat, for emphasis, something
we defined earlier in Example 8.
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Definition. Let V be a vector space over F and let v, v,,...,v, bein
V. The element v € V is said to be a linear combination of vy, v,, ..., v, if
v=auv, + -+ a,v, forsome oy, - a,in F.

As we indicated in Example 8, the set (v, v,, ..., v,) of all linear com-
binations of v,, v,, ..., v, is a vector space over F, and being contained in V,
is a subspace of V. Why is it a vector space? If av; + -+ + a,v, and
Bvy + -+ + B,v, are two linear combinations of v, ..., v,, then

(alvl + -+ anvn) + (Blvl + -+ ann)
= (al + Bl)vl + o (an + Bn)vn
by the axioms defining a vector space, and so is in (v, ..., v,). If y € F and
av, + -+ au, € (vy,...,v,), then
’Y(alvl + ot anvn) = Ya U, + - +yanvn’
and is also in (v, ..., v,). Thus (v,,...,v,) is a vector space. As we called it
earlier, it is the subspace of V spanned over F by v,,...,v,.

This leads us to the ultra-important definition.

Definition. The vector space V over F is finite dimensional over F if
V={(v,...,v,) forsomev,,...,v,in V, that is, if V is spanned over F by a
finite set of elements.

Otherwise, we say that V' is infinite dimensional over F if it is not finite
dimensional over F. Note that although we have defined what is meant by a
finite-dimensional vector space, we still have not defined what is meant by its
dimension. That will come in due course.

Suppose that V is a vector space over F and vy,..., v, in V are such
that every element v in (vy, ..., v,) has a unique representation in the form
v=au, + -+ ayu,, where a4, ..., a, € F. Since

0oe(v,...,v,) and O0=0v,+ --- + Ov,,
by the uniqueness we have assumed we obtain that if vy + -+ + a,v, =0,
then a; = a, = - -+ = «, = 0. This prompts a second ultra-important defini-
tion.

Definition. Let V be a vector space over F; then the elements vy, . . ., v,
in V are said to be linearly independent over F if ajv; + -+ + a,v, = 0,

where a4, ..., a, are in F, implies that ¢y = a, = -+- = a, = 0.
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If the elements v,,..., v, In V are not linearly independent over F,
then we say that they are linearly dependent over F. For example, if R is the
field of real numbers and V is the set of 3-tuples over R as defined in Exam-
ple 1, then (0, O, 1), (0, 1, 0), and (1, O, 0) are linearly independent over R
(Prove!) while (1, —2, 7), (0, 1, 0), and (1, —3, 7) are linearly dependent over
R, since 1(1, —2,7) + (—1)(0,1,0) + (—=1)(1, =3,7) = (0, 0, 0) is a nontrivial
linear combination of these elements over R, which is the 0-vector.

Note that linear independence depends on the field F. If C D R are the
complex and real fields, respectively, then C is a vector space over R, but it is
also a vector space over C itself. The elements 1, i in C are linearly indepen-
dent over R but are not so over C, since i1 + (—1)i = 0 is a nontrivial linear
combination of 1, i over C.

We prove
Lemma 5.2.3. If V is a vector space over Fand v,,..., v, 1n V are lin-
early independent over F, then every element v € (vy, ..., v,) has a unique

representation as

v=a + 0+ oa

n

with a¢,..., a, In F.

Proof. Suppose that v € (v, ..., v,) has the two representations as
v=a + -+ au, = B + -+ + B, with the o’s and B’s in F. This
gives us that (a¢; — B))v; + --- + (a, — B,)v, = 0; since vy, ..., v, are lin-
early independent over F, we conclude that oy — 8, =0, ... ,a, — B, =0,
yielding for us the uniqueness of the representation. []

How finite is a finite-dimensional vector space? To measure this, call a
subset vy, ..., v, of V a minimal generating set for V over Fif V= (v,,...,v,)
and no set of fewer than »n elements spans V over F.

We now come to the third vitally important definition.

Definition. If V is a finite-dimensional vector space over F, then the
dimension of V over F, written dimg(V), is n, the number of elements in a
minimal generating set for V over F.

In the examples given, dimg(C) = 2, since 1, { is a minimal generating
set for C over R. However, dimq(C) = 1. In Example 1, dimg(V) = n and in
Example 3, dimz(V) = n + 1. In Example 7 the dimension of V over F'is 2.
Finally, if (v, ..., v,) C V, then dimg(v,, ..., v,) is at most n.

We now prove
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Lemma 5.2.4. If V is finite dimensional over F of dimension n and if
the elements v,, ..., v, of V generate V over F, then vy, ..., v, are linearly
independent over F.

Proof. Suppose that vy, ..., v, are linearly dependent over F; thus there
is a linear combination ayv; + - -+ + a,v,, = 0, where not all the «; are 0. We
may suppose, without loss of generality, that «; # 0; then v, =

(—Vay)(eyuy + - + a,v,). Given v € V, because vy, ..., v, is a generating
set for V over F,
0= B+ B,

) (—%> (v, + -+ + au,) + By + - + By,

1

thus v,, ..., v, span V over F, contradicting that the subset v, v,,...,v,is a
minimal generating set of V over F. []

We now come to yet another important definition.

Definition. Let V be a finite-dimensional vector space over F; then
vy,...,U,I1s a basis of V over F if the elements v,, ..., v, span V over F and
are linearly independent over F.

By Lemma 5.2.4 any minimal generating set of V over F is a basis of V
over F. Thus, finite-dimensional vector spaces have bases.

Theorem 5.2.5. Suppose that V is finite dimensional over F. Then any two
bases of V over F have the same number of elements, and this number is ex-
actly dimg (V).

Proof. Let vy,..., v, and wy,..., w,, be two bases of V over F. We
want to show that m = n. Suppose that m > n. Because vy, ..., v, is a basis
of V over F, we know that every element in V is a linear combination of the
v; over F. In particular, w, ..., w,, are each a linear combination of vy, ..., v,
over F. Thus we have

Wl = allvl + alzvz + ¢ttt + alnvn

W2 = aZIUl + a221)2 + - + aznvn
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where the q;; are in F.
Consider

Bw, + -+ Bw, = (a11B1 + ayf, + 0+ amle) v+

+ (alnBI + aZnBZ + - F aman) vn'
The system of linear homogeneous equations
a,; B+ aBt - t+a,,B,=0 1=12...,n,

has a nontrivial solution in F by Theorem 5.2.2, since the number of vari-

ables, m, exceeds the number of equations, n. If B4, ..., B, is such a solution
in F, then, by the above, B;w; + - - + B,w,, = 0, yet not all the B; are 0. This
contradicts the linear independence of wy, ..., w,, over F. Therefore, m < n.

Similarly, » = m; hence m = n. The theorem is now proved, since a minimal
generating set of V over F is a basis of V over F and the number of elements
in this minimal generating set is dimz(V’), by definition. Therefore, by the
above, n = dim,(V'), completing the proof. []

A further result, which we shall use in field theory, of a similar nature
to the things we have been doing is

Theorem 5.2.6. Let V be a vector space over F such that dimg(V) =
n. If m > n, then any m elements of V are linearly dependent over F.

Proof. Let wy,...,w,, € Vand letv,,..., v, be a basis of V over F;
here n = dimz (V') by Theorem 5.2.5. Therefore,

W1=a1101+"'+a1nvn, RPN ,Wm=amll)1+"'+amnvn.

The proof given in Theorem 5.2.5, that if m > n we can find B3, ..., B,,in F,
and not all 0, such that g,w, + --- + B,,w,, = 0, goes over word for word.
But this establishes that wy, ..., w,, are linearly dependent over F. []

We close this section with a final theorem of the same flavor as the pre-
ceding ones.

Theorem 5.2.7. Let V be a vector space over F with dimg(V) = n.
Then any # linearly independent elements of V form a basis of V over F.
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Proof. We want to show that if v, ..., v, € V are linearly independent
over F, then they span V over F. Letv € V; thenv, vy,..., v, are n + 1 ele-
ments, hence, by Theorem 5.2.6, they are linearly dependent over F. Thus
there exist elements «, a4, ..., a, in F, not all 0, such that av + av; + -+ +
a,v, = 0. The element a cannot be 0, otherwise av; + --- + a,v, = 0, and
not all the «; are 0. This would contradict the linear independence of the ele-
ments vy, ...,v,over F. Thus « # 0, and sov = (—1/a)(ayv; + - -+ + a,v,) =
B, + -+ + B,v,, where B, = —a;/a;. Therefore, vy, ..., v, span V over F,
and thus must form a basis of V over F. []

PROBLEMS

Easier Problems

1 Determine if the following elements in V, the vector space of 3-tuples
over R, are linearly independent over R.
(a (1,2,3),(4,5,6),(7,8,9).
M) (1,0,1), (0,1, 2),(0,0,1).
(©) (1,2,3),(0,4,5), (3.3, %)

2. Find a nontrivial solution in Zs of the system of linear homogeneous
equations:

X1+ x+t x3=0
x;+2x, +3x;=0

3x; +4x, + 2x; =0

3. If V'is a vector space of dimension n over Z,, p a prime, show that V has
p" elements.

4. Prove all of Lemma 5.2.1.

5. Let Fbe afield and V = F[x], the polynomial ring in x over F. Considering
V as a vector space over F, prove that V is not finite dimensional over F.

6. If V is a finite-dimensional vector space over F and if W is a subspace of
V, prove that:
(a) Wis finite dimensional over F and dimy (W) = dimg (V).
(b) If dimz(W) = dimg(V), then V = W.

* 7. Define what you feel should be a vector space homomorphism ¢ of V
into W, where V and W are vector spaces over F. What can you say about
the kernel, K, of ¢ where K = {v € V| ¢(v) = 0}? What should a vector
space isomorphism be?



190 Fields Ch.5

8. If Vis a vector space over F and W is a subspace of V, define the requi-
site operations in V/W so that V/W becomes a vector space over F.

9. If V is a finite-dimensional vector space over F and v,,..., v, in V are
linearly independent over F, show we can find wy,..., w, in V, where
m + r = dimg(V), such that v,,..., v,, wy,..., w, form a basis of V
over F.

10. If ¢: V — V' is a homomorphism of V onto V' with kernel K, show that
V' = VIK (as vector spaces over F). (See Problem 7).

11. Show that if dimz(V) = n and W is a subspace of V with dimz(W) = m,
then dimz(V/IW) = n — m.

12. If V' is a vector space over F of dimension n, prove that V is isomorphic
to the vector space of n-tuples over F (Example 1). (See Problem 7).

Middle-Level Problems

13. Let K D F be two fields; suppose that K, as a vector space over F, has fi-
nite dimension #n. Show that if a € K, then there exist «,, ay,..., a, In F,
not all 0, such that

ay + aa + aa* + -+ aa” =

14. Let F be a field, F[x] the polynomial ring in x over F, and f(x) # 0 in
F[x]. Consider V = F[x]/J as a vector space over F, where J is the ideal
of F[x] generated by f(x). Prove that

dim; (V) = deg f (x).

15. If V and W are two finite-dimensional vector spaces over F, prove that
V @ W is finite dimensional over F and that dimz(V @ W) =
dimg(V) + dimg(W).

16. Let V be a vector space over F and suppose that U and W are subspaces
of V. Define U + W = {u + w|u € U, w € W}. Prove that:

(a) U + Wis a subspace of V.

(b) U + W s finite dimensional over F if both U and W are.
(c) UN W is asubspace of V.

(d) U + Wis a homomorphic image of U ® W.

(e) If U and W are finite dimensional over F, then
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Harder Problems

17. Let K D F be two fields such that dimz(K) = m. Suppose that V' is a vec-

tor space over K. Prove that:

(a) Vis a vector space over F.

(b) If Vs finite dimensional over K, then it is finite dimensional over F.

(¢) If dimg(V) = n, then dimg(V) = mn [ie, dimg(V) =
dimg (V) dimz(K)].

18. Let K D F be fields and suppose that V is a vector space over K such that
dimg (V) is finite. If dimy (K) is finite, show that dimg (V) if finite and de-
termine its value in terms of dimy (V') and dimg(K).

19. Let D be an integral domain with 1, which happens to be a finite-dimen-
sional vector space over a field F. Prove that D is a field. (Note: Since F1,
which we can identify with F, is in D, the ring structure of D and the vec-
tor space structure of D over F are in harmony with each other.)

20. Let V be a vector space over an infinite field F. Show that V cannot be the
set-theoretic union of a finite number of proper subspaces of V. (Very hard)

3. FIELD EXTENSIONS

Our attention now turns to a relationship between two fields K and F, where
K D F. We call K an extension (or extension field) of F, and call F a subfield
of K. The operations in F are just those of K restricted to the elements of F.
In all that follows in this section it will be understood that F C K.

We say that K is a finite extension of F if, viewed as a vector space over
F, dimg(K) is finite. We shall write dim;(K) as [K : F] and call it the degree
of K over F.

We begin our discussion with what is usually the first result one proves
in talking about finite extensions.

Theorem 5.3.1. Let L D K D F be three fields such that both [L : K]
and [K:F] are finite. Then L is a finite extension of F and [L:F] =
[L:K][K:F].

Proof. We shall prove that L is a finite extension of F by explicitly ex-
hibiting a finite basis of L over F. In doing so, we shall obtain the stronger re-
sult asserted in the theorem, namely that [L : F] = [L : K][K : F].

Suppose that [L : K] = m and [K : F] = n; then L has a basis vy, v, ..., U,
over K, and K has a basis wy, w,, ..., w, over F. We shall prove that the mn
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elements vw;, where i = 1,2,...,mandj =1, 2,..., n, constitute a basis of
L over F.

We begin by showing that, at least, these elements span L over F; this
will, of course, show that L is a finite extension of F. Let a € L; since the ele-
ments v, ..., v, form a basis of L over K, we have a = kv, + --- + kv,
where k,, k,,..., k,, are in K. Since w,, ..., w, is a basis of K over F, we
can express each k; as

k; = fawy + fow, + -+ + finWas

where the f; are in F. Substituting these expressions for the k; in the forego-
ing expression of a, we obtain

a=(fuwi + fiow, + -+ + fiLw,) vy
+ -+ (fmlwl + fmZWZ + - F fmnwn) vm'
Therefore, on unscrambling this sum explicitly, we obtain
a = fiwiy + fiowug + 0 + fijoUi + o+ WU

Thus the mn elements vw; in L span L over F; therefore, [L : F] is finite and,
in fact, [L : F] < mn.

To show that [L : F] = mn, we need only show that the mn elements
v;w; above are linearly independent over F, for then—together with the fact
that they span L over F—we would have that they form a basis of L over F.
By Theorem 5.2.5 we would have the desired result [L:F] = mn =
[L:K][K:F].

Suppose then that for some b;; in F we have the relation

0 = bnvlwl + b1201W2 + ¢t + blnvlwn + bZIUZWI
+ -+ bZnUZWn + -+ bmlvmwl + - bmnvmwn'

Reassembling this sum, we obtain c,v; + c,v, + -+ + ¢,v,, = 0, where ¢; =

byw, +---+by,w,, ... ,c, = b, w +---+b,,,w,. Since the c; are ele-
ments of K and the elements vy, ..., v, in L are linearly independent over K,
we obtainc, =c,=---=¢, = 0.

Recalling that ¢; = b;yw, + --- + b, w,, where the b;; are in F and
where wy, ..., w, in K are linearly independent over F, we deduce from the
fact that ¢, = ¢, = - - - = ¢,, = O that every b;; = 0. Thus only the trivial linear

combination, with each coefficient 0, of the elements v,w; over F can be 0.
Hence the v,w; are linearly independent over F. We saw above that this was
enough to prove the theorem. []
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The reader should compare Theorem 5.3.1 with the slightly more gen-
eral result in Problem 17 of Section 2. The reader should now be able to
solve Problem 17.

As a consequence of the theorem we have the

Corollary. If L D K D F are three fields such that [L : F] is finite,
then [K : F] is finite and divides [L : F].

Proof. Since L O K, K cannot have more linearly independent ele-
ments over F than does L. Because, by Theorem 5.2.6, [L : F] is the size of
the largest set of linearly independent elements in L over F, we therefore get
that [K: F] < [L : F], so must be finite. Since L is finite dimensional over F
and since K contains F, L must be finite dimensional over K. Thus all the
conditions of Theorem 5.3.1 are fulfilled, whence [L: F] = [L:K][K: F].
Consequently, [K : F] divides [L : F], as is asserted in the Corollary. []

If K is a finite extension of F, we can say quite a bit about the behavior
of the elements of K vis-a-vis F.

Theorem 5.3.2. Suppose that K is a finite extension of F of degree n.
Then, given any element u in K there exist elements «, 4, ..., a, in F, not
all zero, such that

ag + aqu + -+ + au’ = 0.

Proof. Since [K: F] = dimz(K) = n and the elements 1, u, %, ..., u"
are n + 1 in number, by Theorem 5.2.6 they must be linearly dependent over
F. Thus we can find «, a,..., a, in F, not all 0, such that oy + au +
o’ + -+ + a,u” = 0, proving the theorem. [

The conclusion of the theorem suggests that we single out elements in
an extension field that satisfy a nontrivial polynomial.

Definition. If K D F are fields, then a € K is said to be algebraic over
F if there exists a polynomial p(x) # 0 in F[x] such that p(a) = 0:

By p(a) we shall mean the element aya” + a @™ ! + -+ + @, in K,
where p(x) = apx" + ax" '+ -+ + a,.

If K is an extension of F such that every element of K is algebraic over
F, we call K an algebraic extension of F. In these terms Theorem 5.3.2 can be
restated as: If K is a finite extension of F, then K is an algebraic extension of F.

The converse of this is not true; an algebraic extension of F need not be
of finite degree over F. Can you come up with an example of this situation?
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An element of K that is not algebraic over F is said to be transcendental
over F.

Let’s see some examples of algebraic elements in a concrete context.
Consider C D Q, the complex field as an extension of the rational one. The com-
plex number a = 1 + { is algebraic over Q, since it satisfies a> — 2a + 2 =0

over Q. Similarly, the real number b = ﬁ +V1 + /2 is algebraic over Q,

since B2 =1+ VI+ V2, so (b2—1%=1+ V2 and therefore
((b* — 1)’ — 1)*> = 2. Expanding this out, we get a nontrivial polynomial ex-
pression in b with rational coefficients, which is 0. Thus b is algebraic over Q.
It is possible to construct real numbers that are transcendental over Q
fairly easily (see Section 6 of Chapter 6). However, it takes some real effort
to establish the transcendence of certain familiar numbers. The two famil-
iar numbers e and 7 can be shown to be transcendental over Q. That e is
such was proved by Hermite in 1873; the proof that 7 is transcendental
over Q is much harder and was first carried out by Lindemann in 1882. We
shall not go into the proof here that any particular number is transcenden-
tal over (). However, in Section 7 of Chapter 6 we shall at least show that
m is irrational. This makes it a possible candidate for a transcendental num-
ber of Q, for clearly any rational number b is algebraic over Q because it
satisfies the polynomial p (x) = x — b, which has rational coefficients.

Definition. A complex number is said to be an algebraic number if it
is algebraic over Q.

As we shall soon see, the algebraic numbers form a field, which is a
subfield of C.

We return to the general development of the theory of fields. We have
seen in Theorem 5.3.2 that if K is a finite extension of F, then every element
of K is algebraic over F. We turn this matter around by asking: If K is an ex-
tension of F and a € K is algebraic over F, can we somehow produce a finite
extension of F using a? The answer is yes. This will come as a consequence of
the next theorem—which we prove in a context a little more general than
what we really need.

Theorem 5.3.3. -Let D be an integral domain with 1 which is a finite-
dimensional vector space over a field F. Then D is a field.

Proof. To prove the theorem, we must produce for a # 0 in D an in-
verse, a” !, in D such that aa™! = 1.
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As in the proof of Theorem 5.3.2, if dimg(D) = n, then 1,4a,4% ..., a"
in D are linearly dependent over F. Thus for some appropriate «y, a4, ..., a,
in F, not all of which are 0,

apa” + a;a” '+ -+ a, = 0.

Let p(x) = Box" + Bix" "' + --- + B, # 0 be a polynomial in F[x] of lowest
degree such that p(a) = 0. We assert that 8, # 0. For if 8, = 0, then

0=pBya +Ba '+ -+ B,_a
— r— r—2
= (Boa '+ B@ P+ -+ B,y a.

Since D is an integral domain and a # 0, we conclude that Bya"™! +
Ba " *+ -+ B,_; = 0, hence g(a) = 0, where gq(x) = Byx"~! +
Bix" "%+ .-+ 4+ B,_; in F[x] is of lower degree than p(x), a contradiction.
Thus B, # 0, hence B, ' is in F and

a(BOar_1 + -t Br—l) — _1
B-

giving us that —(B,a" ! + -+ - + B,_,)/B,, which is in D, is the a~! in D that
we required. This proves the theorem. []

b

Having Theorem 5.3.3 in hand, we want to make use of it. So, how do
we produce subrings of a field K that contain F and are finite dimensional
over F? Such subrings, as subrings of a field, are automatically integral do-
mains, and would satisfy the hypothesis of Theorem 5.3.3. The means to this
end will be the elements in K that are algebraic over F.

But first a definition.

Definition. The element a in the extension K of F is said to be alge-
braic of degree n if there is a polynomial p(x) in F[x] of degree n such that
p(a) = 0, and no nonzero polynomial of lower degree in F[x] has this prop-
erty.

We may assume that the polynomial p(x) in this definition is monic, for
we could divide this polynomial by its leading coefficient to obtain a monic
polynomial g(x) in F[x], of the same degree as p(x), and such that g(a) = 0.
We henceforth assume that this polynomial p(x) is monic; we call it the min-
imal polynomial for a over F.

Lemma 5.3.4. Leta € K be algebraic over F with minimal polynomial
p(x) in F[x]. Then p(x) is irreducible in F[x].
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Proof. Suppose that p(x) is not irreducible in F[x]; then p(x) =
f(x)g(x) where f(x) and g(x) are in F[x] and each has positive degree. Since
0 = p(a) = f(a)g(a), and since f(a) and g(a) are in the field K, we conclude
that f(a) = 0 or g(a) = 0, both of which are impossible, since both f(x) and
g(x) are of lower degree than f(x). Therefore, p(x) is irreducible in F[x]. []

Let a € K be algebraic of degree n over F and let p(x) € F[x] be its
minimal polynomial over F. Given f(x) € F|[x], then f(x) = q(x)p(x) + r(x),
where g(x) and r(x) are in F[x] and r(x) = 0 or deg r(x) < deg p(x) follows
from the division algorithm. Therefore, f(a) = q(a)p(a) + r(a) = r(a), since
p(a) = 0. In short, any polynomial expression in a over F can be expressed as
a polynomial expression in a of degree at most n — 1.

Let Fla] = { f(a) | f(x) € F[x]}. We claim that F[a] is a subfield of K that
contains both F and q, and that [F[a]: F] = n. By the remark made above,
Fla] is spanned over F by 1, a, a ..., a" !, so is finite dimensional over F.
Moreover, as is easily verified, F[a] is a subring of K; as a subring of K, Fla] is
an integral domain. Thus, by Theorem 5.3.3, Fla] is a field. Since it is spanned
over F by 1, a, a*, ..., a*!, we have that [F[a]: F] = n. To show that
[Fla] : F] = n we must merely show that 1, a, @, ..., a" ! are linearly inde-
pendent over F. But if oy + aja + - -+ + a,_;a" ' = 0, with the «, in F, then
q(a) = 0, where g(x) = ap + ayx + -+ - + a,_1x"" ' is in F[x]. Since g(x) is of
lower degree than p(x), which is the minimal polynomial for a in F[x], we are
forced to conclude that g(x) = 0. This implies that ¢y = a; = -+ = a,,_; = 0.
Therefore, 1, a, a% ..., a""! are linearly independent over F and form a basis
of Fla] over F. Thus [F[a]: F] = n. Since Fla] is a field, not merely just a set
of polynomial expressions in a, we shall denote Fla] by F(a). Note also that if
M is any field that contains both F and a, then M contains all polynomial ex-
pressions in a over F, hence M D F(a). So F(a) is the smallest subfield of K
containing both F and a.

Definition. F(a) is called the field or extension obtained by adjoining
atoF.

We now summarize.

Theorem 5.3.5. Let K O F and suppose that a in K is algebraic over F
of degree n. Then F(a), the field obtained by adjoining a to F, is a finite ex-
tension of F, and

[F(a): F] = n.

Before leaving Theorem 5.3.5, let’s look at it in a slightly different way.
Let F[x] be the polynomial ring in x over F, and let M = (p(x)) be the ideal
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of F[x] generated by p(x), the minimal polynomial for a in K over F.
By Lemma 5.3.4, p(x) is irreducible in F[x]; hence, by Theorem 4.5.11,
M is a maximal ideal of F[x]. Therefore, F[x]/(p(x)) is a field by Theorem
4.4.2.

Define the mapping ¢ : F[x] = K by ¢(f(x)) = f(a). The mapping i is
a homomorphism of F[x] into K, and the image of F[x] in K is merely F(a)
by the definition of F(a). What is the kernel of ? It is by definition J =

{f(x) € F[x]| ¢(f(x)) = 0}, and since we know (f(x)) = f(a),J = {f(x) €
F[x]|f(a) = 0}. Since p(x) is in J and p(x) is the minimal polynomial for a

over F, p(x) is of the lowest possible degree among the elements of J. Thus

= (p(x)) by the proof of Theorem 4.5.6, and so J/ = M. By the First Homo-
morphism Theorem for rings, F[x]/M = image of F[x] under ¢ = F(a), and
since F[x]/M is a field, we have that F(a) is a field. We leave the proof, from
this point of view, of [F(a) : F] = deg p(x) to the reader.

PROBLEMS

1. Show that the following numbers in C are algebraic numbers.

(@ V2 + V3.
(b) V7 + V12.
(c) 2 + iV3,
(d) cos(2m/k) + isin(2n/k), k a positive integer.
2. Determine the degrees over Q of the numbers given in Parts (a) and (c)
of Problem 1.
3. What is the degree of cos(27/3) + i sin(27/3) over Q?
4. What is the degree of cos(27/8) + i sin(27/8) over 1?

5. If p is a prime number, prove that the degree of cos(27/p) + i sin(27/p)
over Q is p — 1 and that

f)=1+x+x*+ -+ +xP7!

is its minimal polynomial over Q.
6. (For those who have had calculus) Show that

1s irrational.

7. If a in K is such that a? is algebraic over the subfield F of K, show that a
is algebraic over F.
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8. If F C K and f(a) is algebraic over F, where f(x) is of positive degree in
F[x] and a € K, prove that a is algebraic over F.

9. In the discussion following Theorem 5.3.5, show that F[x]/M is of degree
n = deg p(x) over F, and so [F(a): F] = n = deg p(x).
10. Prove that cos 1° is algebraic over Q. (1° = one degree.)

11. If a € K is transcendental over F, let F(a) = {f(a)/g(a) | f(x), g(x) # 0 €
F[x]}. Show that F(a) is a field and is the smallest subfield of K contain-
ing both F and a.

12. If a is as in Problem 11, show that F(a) = F(x), where F(x) is the field of
rational functions in x over F.

13. Let K be a finite field and F a subfield of K. If [K: F] = n and F has g
elements, show that K has g”" elements.

14. Using the result of Problem 13, show that a finite field has p” elements
for some prime p and some positive integer .

15. Construct two fields K and F such that K is an algebraic extension of F
but is not a finite extension of F.

4. FINITE EXTENSIONS

We continue in the vein of the preceding section. Again K D F will always
denote two fields.

Let E(K) be the set of all elements in K that are algebraic over F. Cer-
tainly, F C E(K). Our objective is to prove that E(K) is a field. Once this is
done, we’ll see a little of how E(K) sits in K.

Without further ado we proceed to

Theorem 5.4.1. [E(K) is a subfield of K.

Proof. What we must show is that if a, b € K are algebraic over F, then
a = b, ab, and a/b (if b # 0) are all algebraic over F. This will assure us that
E(K) is a subfield of K. We’ll do all of a = b, ab, and a/b in one shot.

Let K, = F(a) be the subfield of K obtained by adjoining a to F. Since
a is algebraic over F, say of degree m, then, by Theorem 5.3.5, [K,: F] = m,
Since b is algebraic over F and since K, contains F, we certainly have that b
is algebraic over K. If b is algebraic over F of degree n, then it is algebraic
over K, of degree at most n. Thus K, = K,(b), the subfield of K obtained by
adjoining b to K, is a finite extension of K and [K; : K] = n.

Thus, by Theorem 5.3.1, [K; : F] = [K, : Ko][K: F] = mn; that is, K is
a finite extension of F. As such, by Theorem 5.3.2, K, is an algebraic exten-
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sion of F, so all its elements are algebraic over F. Sincea € K, C K,and b €
K, then all of the elements a * b, ab, a/b are in K, hence are algebraic over
F. This is exactly what we wanted. The theorem is proved. []

If we look at the proof a little more carefully, we see that we have actu-
ally proved a little more, namely the

Corollary. If a and b in K are algebraic over F of degrees m and n,
respectively, then a *+ b, ab, and a/b (if b # 0) are algebraic over F of degree
at most mn.

A special case, but one worth noting and recording, is the case K = C
and F = Q. In that case we called the algebraic elements in C over Q the al-
gebraic numbers. So Theorem 5.4.1 in this case becomes

Theorem 5.4.2. The algebraic numbers form a subfield of C.

For all we know at the moment, the set of algebraic numbers may very
well be all of C. This is not the case, for transcendental numbers do exist; we
show this to be true in Section 6 of Chapter 6.

We return to a general field K. Its subfield £(K) has a very particular
quality, which we prove next. This property is that any element in K which is
algebraic over E(K) must already be in E(K).

In order not to digress in the course of the proof we are about to give,

we introduce the following notation. If a,, a,,..., a, are in K, then
F(ay,..., a,) will be the field obtained as follows: K; = F(a;), K, =
Kl(aZ) = F(al’ aZ)’ K3 = K2(a3) = F(al’ a,, a3)a cee Kn = Kn—l(an) =

F(ay,a,,...,a,).
We now prove

Theorem 5.4.3. If u in K is algebraic over E(K), then u is in E(K).

Proof. To prove the theorem, all we must do is show that « is algebraic
over F; this will put « in E(K), and we will be done.
Since u is algebraic over E(K), there is a nontrivial polynomial f(x) =

x"+ax" '+ a,x""?+---+a,, where a;, a,, ..., a, are in E(K), such that
f(u) = 0. Since aq, a,, ..., a, are in E(K), they are algebraic over F of de-
grees, say, m,, m,, ..., m,, respectively. We claim that [F(a,, ..., a,): F]is

at most m;m, - - - m,. To see this, merely carry out n successive applications
of Theorem 5.3.1 to the sequence K, K,, .. ., K, of fields defined above. We
leave its proof to the reader. Thus, since u is algebraic over the field K,, =
F(ay, a,,..., a,) [after all, the polynomial satisfied by u is f(x) =
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x" + a;x"" '+ --- + a,, which has all its coefficients in F(ay, a,, ..., a,)], the
field K, (u) is a finite extension of K,,, and since K, is a finite extension of F,
we have, again by Theorem 5.3.1, that K,(u) is a finite extension of F. Be-
cause u € K, (u), we obtain from Theorem 5.3.2 that u is algebraic over F.
This puts u in E(K) by the very definition of £(K), thereby proving the theo-
rem. [

There is a famous theorem due to Gauss, often referred to as the Fun-
damental Theorem of Algebra, which asserts (in terms of extension) that the
only finite extension of C, the field of complex numbers, is C itself. In reality
this result is not a purely algebraic one, its validity depending heavily on
topological properties of the field of real numbers. Be that as it may, it is an
extremely important theorem in algebra and in many other parts of mathe-
matics.

The formulation of the Fundamental Theorem of Algebra in terms of
the nonexistence of finite extensions of C is a little different from that which
is usually given. The most frequent form in which this famous result is stated
involves the concept of a root of a polynomial, a concept we shall discuss at
some length later. In these terms the Fundamental Theorem of Algebra be-
comes: A polynomial of positive degree having coefficients in C has at least
one root in C. The exact meaning of this statement and its equivalence with
the other form of the theorem stated above will become clearer later, after
the development of the material on roots.

A field L with the property of C described in the paragraphs above is
said to be algebraically closed. If we grant that C is algebraically closed
(Gauss’ Theorem), then, by Theorem 5.4.3, we also have

The field of algebraic numbers is algebraically closed.

PROBLEMS

1. Show thata = V2 — V3 is algebraic over Q of degree at most 4 by ex-
hibiting a polynomial f(x) of degree 4 over Q). 8uch that f(a) = 0.

2. If a and b in K are algebraic over F of degrees m and n, respectively, and
if m and n are relatively prime, show that [ F(a, b) : F] = mn.

3. If a € C is such that p(a) = 0, where
p(x) =x + V23 + V52 + V7x + V11,

show that a is algebraic over Q of degree at most 80.
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4. If K D Fis such that [K : F] = p, p a prime, show that K = F(a) for every
a in K that is not in F.

5. If [K: F] = 2" and T is a subfield of K containing F, show that [T : F] = 2"
for some m = n.

6. Give an example of two algebraic numbers a and b of degrees 2 and 3, re-
spectively, such that ab is of degree less than 6 over Q.

7. If KD Fare fields and a4, . . ., a, are in K, show that F(a,...,a,) equals
F(a,ay, - - -, ay) for any permutation cof 1,2, ..., n.

5. CONSTRUCTIBILITY

In ancient Greece, unlike in the other cultures of the time, the Greek mathe-
maticians were interested in mathematics as an abstract discipline rather
than as a pragmatic bag of tricks to do accounts or to carry out measure-
ments. They developed strong interests and results in number theory and,
most especially, in geometry. In these areas they posed penetrating ques-
tions. The questions they asked in geometry—two of which will make up the
topic treated here—are still of interest and substance. The English mathe-
matician G. H. Hardy, in his sad but charming little book A Mathematician’s
Apology, describes the ancient Greek mathematicians as “colleagues from
another college.”

Two of these Greek questions will be our concern in this section. But,
as a matter of fact, the answer to both will emerge as a consequence of the
criterion for constructibility, which we will obtain. We state these questions
now and will explain a little later what is entailed in them.

QUESTION 1

Can one duplicate a cube using just straight-edge and compass? (By duplicat-
ing a cube, we mean doubling its volume.)

QUESTION 2
Can one trisect an arbitrary angle using just straight-edge and compass?

Despite the seemingly infinite number of angle-trisectors that crop up
every year, the answer to both questions is “no.” As we shall see, it is impos-
sible to trisect 60° using just straight-edge and compass. Of course, some
angles are trisectable, for instance, 0°, 90°, 145°, 180°, ..., but most angles
(in a very precise meaning of “most”) are not.



202 Fields Ch.5

Before getting to the exact meaning of the questions themselves, we
want to spell out in explicit terms exactly what the rules of the game are.
By a straight-edge we do not mean a ruler—that is, an instrument for mea-
suring arbitrary lengths. No! A straight-edge is merely a straight line,
with no quantitative or metric properties attributed to it. We are given a
line segment—to which we assign length 1—and all other lengths that we
get from this must be obtainable merely employing a straight-edge and
compass.

Let us call a nonnegative real number, b, a constructible length if, by
a finite number of applications of the straight-edge and compass and the
points of intersection obtained between lines and circles so constructed,
we can construct a line segment of length b, starting out from the line seg-
ment we have assigned length 1.

From our high school geometry we recall some things we can do in this
framework.

1. Whatever length we construct on one line can be constructed on any
other line by use of the compass acting as a transfer agent.

2. We can draw a line parallel to a given line that goes through a given
point.

3. We can construct a length »n for any nonnegative integer n.

From these and by using results about the similarity of triangles, we can
construct any nonnegative rational length. We don’t do that at this moment
for it will come out as a special case of what we are about to do.

We claim the following properties:

1. If a and b are constructible lengths, then so is a + b. For if AB is a
length segment of length a and CD is one of length b, we can transfer this
line segment CD, by means of a compass, to obtain the line ABE, where AB
is of length a and BE is of length b. Thus the line segment AE is of length
a + b.If b > a, how would you construct b — a?

2. If a and b are constructible lengths, then so is ab. We may assume
that a # 0 and b # 0, otherwise, the statement is trivial. Consider the follow-
ing diagram

~ 4
o
t~
~
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Where L, and L, are two distinct lines intersecting at P, and such that PA
has length a, PB has length b, and PJ has length 1. Let L; be the straight line
through J and A and L, the line parallel to L; passing through B. If C is the
point of intersection of L, and L,, we have the diagram

P
/J / B
All of these constructions can be carried out by straight-edge and compass.
From elementary geometry the length of PC is ab. Therefore, ab is con-
structible.

3. If a and b are constructible and b # 0, then a/b is constructible. Con-
sider the diagram

Lg L,

A

D
A
where P, A, B, J, L, and L, are as in Property 2 above. Let Ls be the line
through A and B and let L¢ be the line through J parallel to Ls. If D is the
point of intersection of L, and L, then, again by elementary geometry, the
length of PD is a/b. We stress again that all the constructions made can be
carried out by straight-edge and compass.

Of course, this shows that the nonnegative rational numbers are con-
structible lengths, since they are quotients of nonnegative integers, which we
know to be constructible lengths. But there are other constructible lengths,
for instance, the irrational number V2. Because we can construct by straight-
edge and compass the right-angle triangle

C

v
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with sides AB and BC of length 1, we know, by the Pythagorean Theorem,
that AC is of length V2. So V2 is a constructible length.

In Properties 1 to 3 we showed that the constructible lengths almost
form a field. What is lacking is the negatives. To get around this, we make
the

Definition. The real number a is said to be a constructible number if
|a|, the absolute value of a4, is a constructible length.

As far as we can say at the moment, any real number might be a con-
structible one. We shall soon have a criterion which will tell us that certain
real numbers are not constructible. For instance, we shall be able to deduce
from this criterion that both \3/5 and cos 20° are not constructible. This in
turn will allow us to show that the answer to both Questions 1 and 2 is “no.”

But first we state

Theorem 5.5.1. The constructible numbers form a subfield of the field
of real numbers.

Proof. Properties 1 to 3 almost do the trick; we must adapt Property 1
slightly to allow for negatives. We leave the few details to the reader. [

Our next goal is to show that a constructible number must be an alge-
braic number—not any old algebraic number, but one satisfying a rather
stringent condition.

Note, first, that if a = 0 is a constructible number, then so is Va. Con-
sider the diagram

A ¢ D B

It is of a semicircle of radius (@ + 1)/2, center at C, AD is of length a, DB is
of length 1, and DFE is the perpendicular to AB at D, intersecting the circle at
E. All this is constructible by straight-edge and compass. From elementary
geometry we have that DE is of length Va, hence Va is constructible.

We now head for the necessary condition that a real number be con-
structible. Let K be the field of constructible numbers, and let K, be a sub-
field of K. By the plane of K, we shall mean the set of all points (a, b) in the
real Euclidean plane whose coordinates a and b are in K. If (a, b) and (c, d)
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are in the plane of K, then the straight line joining them has the equation
(y = b)/(x —a) = (b —d)/(a — c),sois of the form ux + vy + w = 0, where
u, v, and w are in K,. Given two such lines u;x + v;y + w; = 0 and
ux + v,y + w, =0, where uy, vy, w; and u,, v,, w, are all in K, either they
are parallel or their point of intersection is a point in K. (Prove!)

Given a circle whose radius r is in K, and whose center (a, b) is in the
plane of K, then its equation is (x — a)*> + (y — b)* = r?, which we see, on
expanding, is of the form x> + y* + dx + ey + f = 0, where d, ¢, and f are in K.
To see where this circle intersects a line in the plane of K, ux + vy + w = 0,
we solve simultaneously the equations of the line and of the circle. For in-
stance, if v # 0, then y = —(ux + w)/v; substituting this for y in the equation
of the circle x*> + y* + dx + ey + f = 0 leads us to a quadratic equation for
the x-coordinate, c, of this intersection point, of the form ¢* + s;c + 5, = 0,
with s, and s, in K,. By the quadratic formula, ¢ = (—s; * \/s% — 4s,)/2,
and if the line and circle intersect in the real plane, then s — 4s, = 0. If
s =53 —4s,=0and if K; = KO(\/;), then we see that the x-coordinate, c,
lies in K,. If Vs € K,, then K, = K, otherwise, [K,: K,] = 2. Since the
y-coordinate d = (—uc + w)/v, we have that d is also in K. Thus the inter-
section point (c, d) lies in the plane of K; where [K; : Ky] = 1 or 2. The story
is similar if v = 0 and u # 0.

Finally, to get the intersection of two circles x2 + y* + dx + ey + f =0
and x> + y* + gx + hy + k = 0 in the plane of K, subtracting one of these
equations from the other gives us the equation of the line in the plane of K,
(d—gx + (e — h)y + (f — k) = 0. So to find the points of intersection of
two circles in the plane of K is the same as finding the points of intersection
of a line in the plane of K, with a circle in that plane. This is precisely the situa-
tion we disposed of above. So if the two circles intersect in the real plane, their
points of intersection lie in the plane of an extension of K, of degree 1 or 2.

To construct a constructible length, a, we start in the plane of Q, the ra-
tionals; the straight-edge gives us lines in the plane of Q, and the compass
circles in the plane of Q. By the above, these intersect at a point in the plane
of an extension of degree 1 or 2 of Q. To get to a, we go by this procedure
from the plane of Q to that of L, say, where [L,: Q] = 1 or 2, then to that
of L,, where [L,:L;] = 1 or 2, and continue a finite number of times. We
get, this way, a finite sequence Q = L, C L, C --- C L, of fields, where each
[L;:L;-1]=1or2and whereaisin L,.

By Theorem 5.3.1, [L,: Q] =[L,:L,_{)[L,-1:L,-2] - [L,:Q] and
since each of [L;: L;_;] = 1 or 2, we see that [L, : Q] is a power of 2. Since
a € L,, we have that Q(a) is a subfield of L,, hence by the Corollary to Theo-
rem 5.3.1, [Q(a) : Q] must divide a power of 2, hence [Q(a): Q] = 2™ for
some nonnegative integer m. Equivalently, by Theorem 5.3.5, the minimal
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polynomial for a over Q must have degree a power of 2. This is a necessary
condition that a be constructible. We have proved the important criterion for
constructibility, namely

Theorem 5.5.2. In order that the real number a be constructible, it is
necessary that [Q(a) : Q] be a power of 2. Equivalently, the minimal polyno-
mial of a over Q must have degree a power of 2.

To duplicate a cube of sides 1, so of volume 1, by straight-edge and
compass would require us to construct a cube of sides of length b whose vol-
ume would be 2. But the volume of this cube would be b3, so we would have
to be able to find a constructible number b such that b* = 2,

Given a real number b such that b> = 2, then its minimal polynomial
over Q is p(x) = x> — 2, for this polynomial is monic and irreducible over Q (if
you want, by the Eisenstein Criterion), and p(b) = 0. Also, as is clear to the
eye, p(x) is of degree 3. Since 3 is not a power of 2, by Theorem 5.5.2, there is
no such constructible b. Therefore, the question of the duplication of the cube
by straight-edge and compass has a negative answer. We summarize this in

Theorem 5.5.3. It is impossible to duplicate a cube of volume 1 by
straight-edge and compass.

We now have disposed of the classical Question 1, so we turn our atten-
tion to Question 2, the trisection of an arbitrary angle by straight-edge and
compass.

If we could trisect the particular angle 60°, we would be able to con-
struct the triangle ABC in the diagram

A B

where 6 = 20° and AC is of length 1, by straight-edge and compass. Since AB
is of length cos 20°, we would have that b = cos 20° is a constructible number.

We want to show that b = cos 20° is not a constructible number by pro-
ducing its minimal polynomial over Q, and showing that this polynomial is of
degree 3. To this end we recall the triple-angle formula from trigonometry,
namely that cos3¢ = 4 cos’¢p — 3 cosd. If b = cos20° then, since
cos(3 - 20°) = cos 60° = 3, this trigonometric formula becomes 4b°> — 3b = 3,
and so 8b° — 6b — 1 = 0. If ¢ = 2b, this becomes ¢* — 3¢ — 1 = 0. If b is con-

structible, then so is ¢. But p(c) = 0, where p(x) = x> — 3x — 1, and this
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polynomial is irreducible over Q. (Prove!) So p(x) is the minimal polynomial
for c over Q. Because p(x) is of degree 3, and 3 is not a power of 2, by Theo-
rem 5.5.2 we have that c is not constructible. So we cannot trisect 60° by
straight-edge and compass. This answers Question 2 in the negative.

Theorem 5.5.4. It is impossible to trisect 60° by straight-edge and
compass.

We hope that this theorem will dissuade any reader from joining the
hordes of angle-trisectors. There are more profitable and pleasanter ways of
wasting one’s time.

There is yet another classical problem of this kind to which the answer
is “no.” This is the question of squaring the circle. This question asks: Can
we construct a square whose area is that of a circle of radius 1 by straight-
edge and compass? This is equivalent to asking whether V7 is a con-
structible number. If this were the case, then since = = (\/7_7)2, the number 7
would be constructible. But Lindemann proved in 1882 that 7 is in fact tran-
scendental, so certainly is not algebraic, and so cannot be constructible. There-
fore, the circle of radius 1 cannot be squared by straight-edge and compass.

Of course, what we did above does not constitute a proof of the impos-
sibility of squaring the circle, since we have presupposed Lindemann’s result
without proving it. To prove that 7 is transcendental would take us too far
afield. One might expect that it would be easier to prove that 7 is not con-
structible than to prove that it is not algebraic. This does not seem to be the
case. Until now all proofs that 7 is not constructible go via the route of ex-
ploiting the transcendence of .

PROBLEMS

1. Complete the proof of Theorem 5.5.1.
2. Prove that x*> — 3x — 1 is irreducible over Q.
3. Show that the construction given for Va, a =0 does indeed give us Va.

4. Prove that the regular heptagon (seven-sided polygon with sides of equal
length) is not constructible by straight-edge and compass.

6. ROOTS OF POLYNOMIALS

Let F[x], as usual, be the polynomial ring in x over the field F and let K be an
extension field of F. If a € K and

f(x) =ay+ aypx + -+ + a,x",
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then by f(a) we understand the element
f(a):a0+ala+ "'+anan

in K. This is the usage we have made of this notation throughout this chap-
ter. We will now be interested in those a’s in K such that f(a) = 0.

Definition. The element a € K is a root of the polynomial f(x) € F[x]
if f(a) = 0.

In what we have done up until now we have always had an extension
field K of F given to us and we considered the elements in K algebraic over
F, that is, those elements of K that are roots of nonzero polynomials in F[x].
We saw that if a € K is algebraic over F of degree n—that is, if the minimal
polynomial for a over F is of degree n—then [F(a): F] = n, where F(a) is
the subfield of K obtained by adjoining a to F.

What we do now is turn the problem around. We no longer will have
the extension K of F at our disposal. In fact, our principal task will be to pro-
duce it almost from scratch. We start with some polynomial f(x) of positive
degree in F[x] as our only bit of data; our goal is to construct an extension
field K of F in which f(x) will have a root. Once we have this construction of
K under control, we shall elaborate on the general theme, thereby obtaining
a series of interesting consequences.

Before setting off on this search for the appropriate K, we must get
some information about the relation between the roots of a given polynomial
and the factorization of that polynomial.

Lemma 5.6.1. If a € L is a root of the polynomial f(x) € F[x] of de-
gree n, where L is an extension field of F, then f(x) factors in L[x] as f(x) =
(x — a)q(x), where g(x) is of degree n — 1 in L[x]. Conversely, if f(x) =
(x — a)q(x), with f(x), g(x), and a as above, then a is a root of f(x) in L.

Proof. Since F C L, F[x] is contained in L[x]. Because a € L, x — a is
in L[x]; by the Division Algorithm for polynomials, we have f(x) =
(x — a)q(x) + r(x), where g(x) and r(x) are in L[x] and where r(x) = O or
deg r(x) < deg(x — a) = 1. This yields that r(x) = b, some element of L.
Substituting a for x in the relation above, and using the fact that f(a) = 0, we
obtain 0 = (@ — a)q(a) + b =0+ b = b;thus b = 0. Since r(x) = b = 0, we
have what we wanted, namely f(x) = (x — a)q(x).

For the statement that deg g(x) = n — 1 we note that since f(x) =
(x — a)q(x), then, by Lemma 4.5.2, n = deg f(x) = deg(x — a) + degq(x) =
1 + deg q(x). This gives us the required result, deg g(x) = n — 1.

The converse is completely trivial. []
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One immediate consequence of Lemma 5.6.1 is

Theorem 5.6.2. Let f(x) in F[x] have degree n; then f(x) can have at
most n roots in any extension, K, of F.

Proof. We go by induction on n. If n = 1, then f(x) = ax + b, where a
and b are in F and where a # 0. Thus the only root of f(x) is —b/a, an ele-
ment of F.

Suppose that the theorem is correct for all polynomials of degree k£ — 1
over any field. Suppose that f(x) in F[x] is of degree k. If f(x) has no roots in
K, then the theorem is certainly correct. Suppose, then, that a € K is a root of
f(x). By Lemma 5.6.1, f(x) = (x — a)q(x), where g(x) is of degree k — 1 in
K[x]. Any root b in K of f(x) is either a or is a root of g(x), since 0 = f(b) =
(b — a)q(b). By induction, g(x) has at most k — 1 roots in K, hence f(x) has at
most k roots in K. This completes the induction and proves the theorem. []

Actually, the proof yields a little more. To explain this “little more,” we
need the notion of the multiplicity of a root.

Definition. If K is an extension of F, then the element a in K is a root
of multiplicity k > 0 of f(x), where f(x) is in F[x], if f(x) = (x — a)*q(x) for
some g(x) in K[x] and x — a does not divide q(x) (or, equivalently, where
q(a) # 0).

The same proof as that given for Theorem 5.6.2 yields the sharpened
version:

Let f(x) be a polynomial of degree n in F[x]; then f(x) can have at most n
roots in any extension field K of F, counting a root of multiplicity k as k roots.

Theorem 5.6.3. Let f(x) in F[x] be monic of degree n and suppose
that K is an extension of F in which f(x) has » roots, counting a root of multi-
plicity k as k roots. If these roots in K are a;, a,,..., a,, each having
multiplicity k,, k,, ..., k,, respectively, then f(x) factors in K[x] as f(x) =
(x —a)fi(x — @) (x — a,)

Proof. The proof is easy by making use of Lemma 5.6.1 and of induc-
tion on n. We leave the carrying out of the proof to the reader. [

Definition. We say that f(x) in F[x] splits into linear factors over (or
in) K if f(x) has the factorization in K[x] given in Theorem 5.6.3.

There is a nice application of Theorem 5.6.3 to finite fields. Let F be a
finite field having g elements, and let a,, a,, ..., a,_; be the nonzero ele-
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ments of F. Since these form a group of order g — 1 under the multiplication
in F, by Theorem 2.4.5 (proved ever so long ago), a? ' = 1 for any a # 0 in
F. Thus the polynomial x?' — 1 in F[x] has g — 1 distinct roots in F. By
Theorem 5.6.3, the polynomial x?™!' — 1= (x —a)(x —a,) - -~ (x —a,_,). If
we also consider 0, then every element a in F satisfies a? = a, so that the
polynomial x? — x has the g elements of F as its distinct roots. By Theorem
5.6.3 we have

Theorem 5.6.4. Let F be a finite field having g elements. Then x¢ — x
factors in F[x] as

Xt —x=x(x —a))(x —ay) - (x — a,4),
where ay, a,, ..., a,_, are the nonzero elements of F, and
= 1= (x = @) - ) (= a,).

A very special case of this theorem is that in which F = Z,, the integers
modulo the prime p. Here ¢ = p and a,, a,,...,a,_jarejust1,2,...,p — 1
in some order.

Corollary. In Z,[x], the polynomial x”~' — 1 factors as

Pl =-1=x-Dx-2)--(x—(p—1)).

Try this out for p = 5, 7, and 11.

As a corollary to the corollary, we have a result in number theory,
known as Wilson’s Theorem, which we assigned as Problem 18 in Section 4 of
Chapter 2.

Corollary. If p is a prime, then (p — 1)! = —1 mod p.

Proof. By the Corollary above,
Pl =1=@x-1Dx—-2)---(x—(p— 1)

substituting x = 0 in this gives us

“1=(-1)(-2) - (=(p - D) = (=112 (p = 1)

= (=177(p — 1)
in Z,. In the integers this translates into “congruent mod p.” Thus
(—1"(p — 1)! = —1modp,

and so (p — 1)! = (—~1)” mod p. But (—=1)” = —1 mod p; hence we have
proved Wilson’s Theorem. [
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We change direction to consider the problem mentioned at the begin-
ning of this section: given f(x) € F[x], to construct a finite extension K of F
in which f(x) has a root. As we shall see in a moment, this construction of K
will be quite easy when we bring the results about polynomial rings proved in
Chapter 4 into play. However, to verify that this construction works will take
a bit of work.

Theorem 5.6.5. Let F be a field and f(x) a polynomial of positive de-
gree n in F[x]. Then there exists a finite extension K of F, with [K : F] < n, in
which f(x) has a root.

Proof. By Theorem 4.5.12, f(x) is divisible in F[x] by some irreducible
polynomial p(x) in F[x]. Since p(x) divides f(x), deg p(x) = deg f(x) = n,
and f(x) = p(x)q(x) for some polynomial q(x) in F[x]. If b is a root of p(x)
in some extension field, then b is automatically a root of f(x), since f(b) =
p(b)q(b) = 0g(b) = 0. So to prove the theorem it is enough to find an exten-
sion of F in which p(x) has a root.

Because p(x) is irreducible in F[x], the ideal M = (p(x)) of F[x] gener-
ated by p(x) is a maximal ideal of F[x] by Theorem 4.5.11. Thus by Theorem
442, K = F[x]/M is a field. We claim that this is the field that we are seeking.

Strictly speaking, K does not contain F'; as we now show, however, K
does contain a field isomorphic to F. Since every element in M is a multiple in
F[x] of p(x), every such nonzero element must have degree at least that of
p(x). Therefore, M N F = (0). Thus the homomorphism ¢ : F[x] — K defined
by ¥(g(x)) = g(x) + M for every g(x) in F[x], when restricted to F,is 1 — 1 on
F. Therefore, the image F of F in K is a field isomorphic to F. We can identify
F, via s, with F and so, in this way, we can consider K an extension of F.

Denote x + M € K by a, so that ¢(x) = a, a € K. We leave it to the
reader to show, from the fact that ¢ is a homomorphism of F[x] onto K with
kernel M, that ¥(g(x)) = g(a) for every g(x) in F[x]. What is ¢(p(x))? On
the one hand, since p(x) is in F[x], ¢(p(x)) = p(a). On the other hand, since
p(x) is in M, the kernel of ¢, ¢(p(x)) = 0. Equating these two evaluations of
U (p(x)), we get that p(a) = 0. In other words, the element a = (x) in K is a
root of p(x).

To finish the proof, all we need is to show that [K : F] = deg p(x) < n.
This came up earlier, in the alternative proof we gave of Theorem 5.3.5.
There we left this point to be proved by the reader. We shall be a little more
generous here and carry out the proof in detail.

Given h(x) in F[x], then, by the Division Algorithm, A(x) = p(x)q(x) +
r(x) where g(x) and r(x) are in F[x], and r(x) = 0 or deg r(x) < deg p(x).
Going modulo M, we obtain that
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Y(h(x)) = ¥(p(x)q(x) + r(x)) = b(p(x)q(x)) + ¥(r(x))
= y(p())P(a(x)) + ¢¥(r(x))
= y(r(x)) = r(a)

[since y(p(x)) = p(a) = 0].

So, since every element in K = F[x]/M is (h(x)) for some A(x) in F[x]
and ¥(h(x)) = r(a), we see that every element of K is of the form r(a), where
r(x) is in F[x] and deg r(x) < deg p(x). If deg p(x) = m, the discussion just
made tells us that 1, a, a% ..., a™ ! span K over F. Moreover, these elements
are linearly independent over F, since a relation of the type ay + aja + - -
+ a,,_;a™" ! = 0 would imply that g(a) = 0 where g(x) = ag + ax + -+ +
a@,,_1x™"is in F[x]. This puts g(x) in M, which is impossible since g(x) is of
lower degree than p(x), unless g(x) = 0. In other words, we get a contradic-
tion unless ¢y = a; =--- =a,,_; = 0. So the elements 1, a, a%, ...,a™ !are
linearly independent over F. Since they also span K over F, they form a basis

of K over F. Consequently,
dim;K = [K:F] = m = degp (x) =n = deg f(x).

The theorem is proved. [

We carry out an iteration of the argument used in the last proof to
prove the important

Theorem 5.6.6. Let f(x) € F[x] be of degree n. Then there exists an
extension K of F of degree at most n! over F such that f(x) has n roots, count-
ing multiplicities, in K. Equivalently, f(x) splits into linear factors over K.

Proof. We go by induction on n. If n = 1, then f(x) = a + Bx, where a,
B € F and where B # 0. The only root of f(x) is —a/B, which is in F. Thus
K=Fand[K:F]=1.

Suppose that the result is true for all fields for polynomials of degree k,
and suppose that f(x) € F[x] is of degree k + 1. By Theorem 5.6.5 there ex-
ists an extension K, of F with [K;: F] = k + 1 in which f(x) has a root a;.
Thus in K,[x], f(x) factors as f(x) = (x — a;)q(x), where g(x) € K,[x] is of
degree k. By induction there exists an extension K of K, of degree at most k!
over K, over which g(x) splits into linear factors. But then f(x) splits into lin-
ear factors over K. Since [K: F] = [K: K ][K;: F] = (k + k! = (k + 1)!,
the induction is completed and the theorem is proved. []

We leave the subject of field extensions at this point. We are exactly at
what might be described as the beginning of Galois theory. Having an exten-
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sion K of F of finite degree over which a given polynomial f(x) splits into lin-
ear factors, there exists an extension of least degree enjoying this property.
Such an extension is called a splitting field of f(x) over F. One then proceeds
to prove that such a splitting field is unique up to isomorphism. Once this is
in hand the Galois theory goes into full swing, studying the relationship be-
tween the group of automorphisms of this splitting field and its subfield struc-
ture. Eventually, it leads to showing, among many other things, that there
exist polynomials over the rationals of all degrees 5 or higher whose roots
cannot be expressed nicely in terms of the coefficients of these polynomials.

This is a brief and very sketchy description of where we can go from
here in field theory. But there is no hurry. The readers should assimilate the
material we have presented; this will put them in a good position to learn
Galois theory if they are so inclined.

PROBLEMS

1. Prove Theorem 5.6.3.

2. If Fis a finite field having the ¢ — 1 nonzero elements a4, a,, ..., a,_q,
prove thataa,---a,_; = (—1).

3. Let Q be the rational field and let p(x) = x* + x> + x> + x + 1. Show
that there is an extension K of Q with [K : @] = 4 over which p(x) splits
into linear factors. [Hint: Find the roots of p(x).]

4. Ifgq(x) =x"+a;x" '+ ---+a,, a, # 0, is a polynomial with integer
coefficients and if the rational number r is a root of g(x), prove that r is
an integer and r | a,,.

5. Show that g(x) = x> — 7x + 11 is irreducible over Q.

6. If Fis a field of characteristic p # 0, show that (a + b)? = a? + b” for all
aand b in F.

7. Extend the result of Problem 6 by showing that (a + b)" = a™ + b",
where m = p”.

8. Let F = Z,, p a prime, and consider the polynomial x™ — x in Z[x],
where m = p”. Let K be a finite extension of Z, over which x™ — x splits
into linear factors. In K let K, be the set of all roots of x” — x. Show that
K is a field having at most p” elements.

9. In Problem 8 show that K has exactly p" elements. (Hint: See Problem
14.)

10. Construct an extension field K, of Q such that [K,: Q] = n, for any
n=1.
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11. Define the mapping & : F[x] — F[x] by
d(ag + ax + ax* + - -+ + a,x")
=a, +2a,x + - +iax" '+ -+ + na,x""",

Prove that:
(@) 3(f(x) + g(x)) = 8(f(x)) + 8(g(x)).
(b) 3(f(x)g(x)) = f(x)d(g(x)) + 8(f(x))g(x) for all f(x) and g(x) in F[x].

12. If F is of characteristic p # 0, characterize all f(x) in F[x] such that
6(f(x)) = 0.

13. Show that if f(x) in F[x] has a root of multiplicity greater than 1 in some
extension field of F, then f(x) and &(f(x)) are not relatively prime in
F[x].

14. If F is of characteristic p # 0, show that all the roots of x” — x, where
m = p", are distinct.

15. If f(x) in F[x] is irreducible and has a root of multiplicity greater than 1
in some extension of F, show that:

(a) F must be of characteristic p for some prime p.
(b) f(x) = g(x?) for some polynomial g(x) in F[x].
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SPECIAL TOPICS (OPTIONAL)

In this final chapter we treat several unrelated topics. One of these comes
from group theory, and all the rest from the theory of fields. In handling
these special topics, we draw from many of the results and ideas developed
earlier in the book. Although these topics are somewhat special, each of
them has results that are truly important in their respective areas.

The readers who have managed to survive so far should have picked up
a certain set of techniques, experience, and algebraic know-how to be able to
follow the material with a certain degree of ease. We now feel free to treat
the various matters at hand in a somewhat sketchier fashion than we have
heretofore, leaving a few more details to the reader to fill in.

The material we shall handle does not lend itself readily to problems, at
least not to problems of a reasonable degree of difficulty. Accordingly, we
will assign relatively few exercises. This should come as a relief to those
wanting to assimilate the material in this chapter.

1. THE SIMPLICITY OF A,

In Chapter 3, where we discussed S,, the symmetric group of degree n, we
showed that if n = 2, then S, has a normal subgroup A,, which we called the
alternating group of degree n, which is a group of order n!/2. In fact, A, was
merely the set of all even permutations in S,,.

215
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In discussing A ,,, we said that A,, for n = 5, was a simple group, that is,
that A, has no normal subgroups other than (e) and itself. We promised
there that we would prove this fact in Chapter 6. We now make good on this
promise.

To make clear what it is that we are about to prove, we should perhaps
repeat what we said above and formally define what is meant by a simple

group.

Definition. A nonabelian group is said to be simple if its only normal
subgroups are (e) and itself.

We impose the proviso that G be nonabelian to exclude the trivial ex-
amples of cyclic groups of prime order from the designation “simple.” These
cyclic groups of prime order have no nontrivial subgroups at all, so, perforce,
they have no proper normal subgroups. An abelian group with no proper
subgroups is easily seen to be cyclic of prime order.

We begin with the very easy

Lemma 6.1.1. If n = 3 and 7,, 7, are two transpositions in S, then 7,7,
is either a 3-cycle or the product of two 3-cycles.

Proof. If 7, = 7,, then 7,7, = 77 = e and e is certainly the product of
two 3-cycles, for instance as e = (123)(132).

If 7, # 7,, then they either have one letter in common or none. If they
have one letter in common, we may suppose, on a suitable renumbering, that
7, = (12) and 7, = (13). But then 7,7, = (12)(13) = (132), which is already a
3-cycle.

Finally, if 7, and 7, have no letter in common, we may suppose, without
loss of generality, that 7, = (12) and 7, = (34), in which case 7,7, = (12)(34) =
(142)(143), which is indeed the product of two 3-cycles. The lemma is now
proved. []

An immediate consequence of Lemma 6.1.1 is that for n = 3 the
3-cycles generate A,, the alternating group of degree n.

Theorem 6.1.2. If o is an even permutation in S,, where n = 3, then o
is a product of 3-cycles. In other words, the 3-cycles in S, generate A ,.

Proof. Let o € S, be an even permutation. By the definition of the par-
ity of a permutation, o is a product of an even number of transpositions.
Thus o = 775 «-+ T3, 1Ty *** Tam-1T2m 1S @ product of 2m transpositions
Ti, T2, ..., Toy- By Lemma 6.1.1, each 7,;_;7,; is either a 3-cycle or a product
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of two 3-cycles. So we get that o is either a 3-cycle or the product of at most
2m 3-cycles. This proves the theorem. []

We now give an algorithm for computing the conjugate of any permu-
tation in S,. Let o € S,,, and suppose that o(i) = j. What does 707~ ! look
like if 7 € S,? Suppose that 7(i) = s and 7(j) = t; then 7077 !(s) =
1a(17'(s)) = 70(i) = 7(j) = t. In other words, to compute 707~ ! replace
every symbol in o by its image under 7.

For instance, if o = (123) and 7 = (143), then, since 7(1) = 4, 7(2) = 2,
7(3) = 1, and 7(4) = 3, we see that To7~ ! = (421) = (142).

Given two k-cycles, say (12 - - - k) and (i,i, - - - iy), then they are conju-
gate in S, because if 7 is a permutation that sends 1 into i;, 2 into i,, ..., k
into i, then 7(12 - - - k)7 ! = (i4i,, ..., i;). Since every permutation is the
product of disjoint cycles and conjugation is an automorphism, we get, from
the result for k-cycles, that to compute o7~ ' for any permutation o, replace
every symbol in o by its image under 7. In this way we see that it is extremely
easy to compute the conjugate of any permutation.

Given two permutations o, and o, in S, then they are conjugate in §,,,
using the observation above, if in their decompositions into products of dis-
joint cycles they have the same cycle lengths and each cycle length with the
same multiplicity. Thus, for instance, (12)(34)(567) and (37)(24)(568) are
conjugate in Sg, but (12)(34)(567) and (37)(568) are not.

Recall that by a partition of the positive integer n, we mean a decompo-
sitonofnasn=n, +n,+---+n,where0=n, =n,<---=n,.Ifoin
S, is the disjoint product of an n,-cycle, an n,-cycle, ..., an n,-cycle, then
n,+ n,+ .-+ n, = n,and a permutation 7is conjugate to o if and only if 7
is the disjoint product of cycles in the same way. Therefore, the number of
conjugacy classes in S, is equal to the number of partitions of n.

For instance, if n = 4, then the partitions of 4 are 4 = 4, 4 = 1 + 3,
4=1+1+2,4=1+1+1+1, and 4 = 2 + 2, which are five in num-
ber. Thus S, has five conjugacy classes, namely the classes of (1234), (123),
(12), e, and (12)(34), respectively.

We summarize everything we said above in three distinct statements.

Lemma 6.1.3. To find 77~ ' in S,, replace every symbol in the cycle
structure of o by its image under 7.

Lemma 6.1.4. Two elements in S, are conjugate if they have similar
decompositions as the product of disjoint cycles.

Lemma 6.1.5. The number of conjugacy classes in S, is equal to the
number of partitions of n.
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Clearly, from the results above, any two 3-cycles in S, are conjugate in
S,. A 3-cycle is an even permutation, so is in A,. One might wonder if any
two 3-cycles are actually conjugate in the smaller group A,. For n = 5 the
answer is “yes,” and is quite easy to prove.

Lemma 6.1.6. If n =5, then any two 3-cycles in S, are already conju-
gatein A,,.

Proof. Let o, and o, be two 3-cycles in §,; by Lemma 6.1.4 they are
conjugate in S,. By renumbering, we may assume that o, = (123) and o, =
7(123)7~! for some 1 € §,. If 7is even, then we are done. If 7is odd, then
p = 7(45) is even and p(123)p~ ' = 7(45)(123)(45) "' ! = 7(123)77' = o,.
Therefore, o, and o, are conjugate in A,. We thus see that the lemma is cor-
rect. []

In §; the two 3-cycles (123) and (132) are conjugate in S; but are not
conjugate in A, which is a cyclic group of order 3.

We now prove a result that is not only important in group theory, but
also plays a key role in field theory and the theory of equations.

Theorem 6.1.7. If n = 5, then the only nontrivial proper normal sub-
groupof S, 1s A,,.

Proof. Suppose that N is a normal subgroup of S, and N is neither (e)
nor S,. Let o # e be in N. Since the center of S, is just (e) (See Problem 1)
and the transpositions generate S,, there is a transposition 7 such that
ot # 170. By Lemma 6.1.4, 1, = oro ! is a transposition, so 77, = 1010 ' # €
isin N, since ¢ € N and 707 = 707~ ! € N because N is normal in S,. So N
contains an element that is the product of two transpositions, namely 77,.

If 7 and 7, have a letter in common, then, as we saw in the proof of
Lemma 6.1.1, 77, is a 3-cycle, hence N contains a 3-cycle. By Lemma 6.1.4 all
3-cycles in S, are conjugate to 77; so must fall in N, by the normality of N in
S,. Thus the subgroup of S, generated by the 3-cycles, which, according to
Theorem 6.1.2, is all of A, lies in N. Note that up to this point we have not
used that n = 5.

We may thus assume that 7 and 7, have no letter in common. Without
loss of generality we may assume that 7 = (12) and 7, = (34); therefore,
(12)(34) is in N. Since n = 5, (15) is in S, hence (15)(12)(34)(15)"! =
(25)(34) is also in N; thus (12)(34)(25)(34) = (125) is in N. Thus in this case
also, N must contain a 3-cycle. The argument above then shows that N D A ,.

We have shown that in both cases N must contain A,. Since there are
no subgroups strictly between A, and S, and N # §,,, we obtain the desired
result that N = A,. []
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The result is false for n = 4; the subgroup
N = {e, (12)(34), (13)(24), (14)(23)}

is a proper normal subgroup of S, and is not A,.

We now know all the normal subgroups of S, when n = 5. Can we de-
termine from this all the normal subgroups of A, for n = 5? The answer is
“yes”; as we shall soon see, A, is a simple group if n = 5. The proof we give
may strike many as strange, for it hinges on the fact that 60, the order of A,
is not a perfect square.

Theorem 6.1.8. The group A;is a simple group of order 60.

Proof. Suppose that A is not simple; then it has a proper normal
subgroup N whose order is as small as possible. Let the subset T =
o € S5| No~! C N}, the normalizer of N in Ss. Since N is normal in A5, we
know that T D As. T is a subgroup of S5, so if T # A5, we would have that
T = S5. But this would tell us that N is normal in S5, which, by Theorem
6.1.7, would imply that N D As, giving us that N = A5, contrary to our suppo-
sition that N is a proper subgroup of As. So we must have 7' = A;. Since (12)
is odd, it is not in As, hence is not in T. Therefore, M = (12)N(12)"' # N.

Since N <1 A5, we also have that M < A5 (Prove!), thus both M N N
and MN = {mn|m € M, n € N} are normal in A;. (See Problem 9.) Because
M # N we have that M N N # N, and since N is a minimal proper normal
subgroup of As, it follows that M N N = (e). On the other hand,
(12)MN(12)"' = (12)M(12) '(12)N(12) ! = NM (since (12)N(12)"' = M
and (12)M(12)"!' = N) = MN by the normality of M and N in As. There-
fore, the element (12) is in the normalizer of MN in S5, and since MN is nor-
mal in A, we get, as we did above, the MN is normal in S5, and so MN = A,
by Theorem 6.1.7.

Consider what we now have. Both M and N are normal subgroups of
Aj, each of order |N|, and MN = As;and M N N = (e). We claim, and leave
to the reader, that MN must then have order |N|%. Since MN = As, we ob-
tain that 60 = |[A5| = [MN| = |N|*. But this is sheer nonsense, since 60 is not
the square of any integer. This establishes Theorem 6.1.8. []

To go from the simplicity of A5 to that of A, for n = 5 is not too hard.
Note that the argument we gave for A did not depend on 5 until the punch
line “60 is not the square of any integer.” In fact, the reasoning is valid as
long as we know that n!/2 is not a perfect square. Thus, for example, if n = 6,
then 6!/2 = 360 1s not a square, hence A is a simple group. Since we shall
need this fact in the subsequent discussion, we record it before going on.
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Corollary to the Proof of Theorem 6.1.8. A is a simple group.

We return to the question of whether or not n!/2 is a square. As a mat-
ter of fact, it is not if n > 2. This can be shown as a consequence of the beau-
tiful theorem in number theory (the so-called Bertrand Postulate), which as-
serts that for m > 1 there is always a prime between m and 2m. Since we do
not have this result at our disposal, we follow another road to show the sim-
plicity of A, for alln = 5.

We now prove this important theorem.

Theorem 6.1.9. For all n = 5 the group A, is simple.

Proof. By Theorem 6.1.8 we may assume that n = 6. The center of A4,
for n > 3 is merely (e). (Prove!) Since A, is generated by the 3-cycles, if
o # eisin A,, then, for some 3-cycle 7, o7 # 70.

Suppose that N # (e) is a normal subgroup of A, and that o # eisin N.
Thus, for some 3-cycle 7, o7 # 70, which is to say, oro~ '77! # e. Because
N is normal in A, the element 7o~ 7~ !is in N, hence o070~ '77 ! is also in N.
Since 7 is a 3-cycle, so must oro ! also be a 3-cycle. Thus N contains the
product of two 3-cycles, and this product is not e. These two 3-cycles involve
at most six letters, so can be considered as sitting in A4 which, since n = 6,
can be considered embedded isomorphically in A,. (Prove!) But then
N N Ay # (e) is a normal subgroup of A¢, so by the Corollary above,
N N A = Ay. Therefore, N must contain a 3-cycle, and since all 3-cycles are
conjugate in A, (Lemma 6.1.6), N must contain all the 3-cycles in S, . Since
these 3-cycles generate A,, we obtain that N is all of A,,, thereby proving the
theorem. []

There are many different proofs of Theorem 6.1.9—they usually in-
volve showing that a normal subgroup of A, must contain a 3-cycle—which
are shorter and possibly easier than the one we gave. However, we like the
bizarre twist in the proof given in that the whole affair boils down to the fact
that 60 is not a square. We recommend to the reader to look at some other
proofs of this very important theorem, especially in a book on group theory.

The A, provide us with an infinite family of finite simple groups. There
are several other infinite families of finite simple groups and 26 particular
ones that do not belong to any infinite family. This determination of all
finite simple groups, carried out in the 1960s and 1970s by a large number of
group theorists, is one of the major achievements of twentieth-century math-
ematics.
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PROBLEMS

*1. Prove that if n > 2, the center of S, is (e).
*2. Prove that if n > 3, the center of A, is (e).
3. What can you say about the cycle structure of the product of two
3-cycles?
4. If m < n, show that there is a subgroup of S, isomorphic to §,,.

5. Show that an abelian group having no proper subgroups is cyclic of
prime order.

6. How many conjugacy classes are there in S4?

7. If the elements a4, a,, . . ., a, generate the group G and b is a noncentral
element of G, prove that ba; # a;b for some i.

8. If M <N and N < G, show that aMa™! is normal in N for every a € G.
9. If M QG and N < G, show that MN is a normal subgroup of G.
10. If n = 5 1s odd, show that the n-cycles generate A ,,.

11. Show that the centralizer of (12 - - - k) in S, has order k£ (n — k)! and that
(12 - - - k) has n!/(k (n — k)!) conjugates in S,,.
12. In the proof of Theorem 6.1.8, show that [MN| = |[N|%

2. FINITE FIELDS |

Our goal in this section and the next two is to get a complete description of
all finite fields. What we shall show is that the multiplicative group of
nonzero elements of a finite field is a cyclic group. This we do in this section.
In the next two, the objectives will be to establish the existence and unique-
ness of finite fields having p” elements for any prime p and any positive inte-
ger n.

Some of the things we are about to do already came up in the problem
sets in group theory and field theory as hard problems. The techniques that
we use come from group theory and field theory, with a little number theory
thrown in.

We recall what the Euler ¢-function is. We define the Euler ¢-function
by: ¢(1) = 1 and, for n > 1, ¢(n) is the number of positive integers less than
n and relatively prime to n.

We begin with a result in number theory whose proof, however, will ex-
ploit group theory. Before doing the general case, we do an example.

Let n = 12; then ¢(12) = 4, for only 1, 5, 7, and 11 are less than 12 and
relatively prime to 12. We compute ¢(d) for all the divisors of 12. We have:
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e(1) =1, o(2) = 1, ¢(3) = 2, ¢(4) = 2, ¢(6) = 2, and ¢(12) = 4. Note that
the sum of all ¢(d) over all the divisors of 12 is 12. This is no fluke but is a
special case of

Theorem 6.2.1. If n = 1, then Z¢(d) = n, where this sum runs over all
divisors d of n.

Proof. Let G be a cyclic group of order n generated by the element a.
If d | n, how many elements of G have order d? If b = a"'%, then all the solu-
tions in G of x? = e are the powers e, b, b, ..., b*"! of b. How many of
these have order d? We claim, and leave to the reader, that b” has order d if
and only if r is relatively prime to d. So the number of elements of order d in
G, for every divisor d of n, is ¢(d). Every element in G has order some divi-
sor of n, so if we sum up the number of elements of order d—namely ¢(d)—
over all d dividing n, we account for each element of G once and only once.
Hence 2¢(d) = n if we run over all the divisors d of n. The theorem is now
proved. []

In a finite cyclic group of order n the number of solutions of x = e, the
unit element of G, is exactly d for every d that divides n. We used this fact in
the proof of Theorem 6.2.1. We now prove a converse to this, getting thereby
a criterion for cyclicity of a finite group.

Theorem 6.2.2. Let G be a finite group of order n with the property
that for every d that divides n there are at most d solutions of x? = e in G.
Then G is a cyclic group.

Proof. Let {(d) be the number of elements of G of order d. By hy-
pothesis, if a € G is of order d, then all the solutions of x = e are the dis-
tinct powers e, a, a%, ..., a®~!, of which number, ¢(d) are of order d. So if
there is an element of order d in G, then ¢(d) = ¢(d). On the other hand, if
there is no element in G of order d, then (d) = 0. So for all d | n we have
that ¢(d) = ¢(d). However, since every element of G has some order d that
divides n we have that Z¢(d) = n, where this sum runs over all divisors d of
n. But

n=2y(d)=Zp(d) =n

since each ¢(d) = ¢(d). This gives us that 2 (d) = Z¢(d), which, together
with ¢ (d) = ¢(d), forces y(d) = ¢(d) for every d that divides n. Thus, in
particular, ¢(n) = ¢(n) = 1. What does this tell us? After all, y(n) is the
number of elements in G of order n, and since Y(n) = 1 there must be an ele-
ment a in G of order n. Therefore, the elements e, a, a?, ..., a" ! are all dis-
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tinct and are » in number, so they must give all of G. Thus G is cyclic with a
as generator, proving the theorem. []

Is there any situation where we can be sure that the equation x? = e
has at most d solutions in a given group? Certainly. If K* is the group of
nonzero elements of a field under multiplication, then the polynomial x” — 1
has at most # roots in K* by Theorem 5.6.2. So, if G C K* is a finite multi-
plicative subgroup of K*, then the number of solutions of x? = 1 in G is at
most d for any positive integer d, so certainly for all d that divide the order
of G. By Theorem 6.2.2 G must be a cyclic group. We have proved

Theorem 6.2.3. If K is a field and K* is the group of nonzero ele-
ments of K under multiplication, then any finite subgroup of K* is cyclic.

A very special case of Theorem 6.2.3, but at the moment the most im-
portant case for us, is

Theorem 6.2.4. If K is a finite field, then K* is a cyclic group.

Proof. K* is a finite subgroup of itself, so, by Theorem 6.2.3, K* is
cyclic. [

A particular instance of Theorem 6.2.4 is of great importance in num-
ber theory, where it is known as the existence of primitive roots mod p for p a
prime.

Theorem 6.2.5. If p is a prime, then Z}, is a cyclic group.

PROBLEMS

1. If a € G has order d, prove that a” also has order d if and only if r and d
are relatively prime.

2. Find a cyclic generator (primitive root) for Z1;.

3. Do Problem 2 for Z .

4. Construct a field K having nine elements and find a cyclic generator for
the group K*.

5. If p is a prime and m = p? then Z,, is not a field but the elements
{la] | (a, p) = 1} form a group under the multiplication in Z,,. Prove that
this group is cyclic of order p(p — 1).
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6. Determine all the finite subgroups of C*, where C is the field of complex
numbers.

In the rest of the problems here ¢ will be the Euler ¢-function.

7. If p is a prime, show that o(p") = p"~1(p — 1).
8. If m and n are relatively prime positive integers, prove that

¢(mn) = o(m)e(n).
9. Using the result of Problems 7 and 8, find ¢(») in terms of the factoriza-
tion of n into prime power factors.
10. Prove that 'll_rgo p(n) = oo,

3. FINITE FIELDS II: EXISTENCE

Let K be a finite field. Then K must be of characteristic p, p a prime, and K con-
tains 0, 1, 2,..., p — 1, the p multiples of the unit element 1 of K. So K O Z,,,
or, more precisely, K contains a field isomorphic to Z,. Since K is a vector
space over Z, and clearly is of finite dimension over Z,, if [K:Z,] = n, then

K has p" elements. To see this, let vy, vy, ..., v, be a basis of K over Z,. Then
for every distinct choice of (o, @,, . . ., @), where the q; are in Z,,, the elements
alvl + a202 + - + anvn
are distinct. Thus, since we can pick («a,, a5, ..., a,) in p" ways, K has p"

elements.

The multiplicative group K* of nonzero elements of K is a group of
order p" — 1. So, we have that a™ ! = 1, where m = p", for every a in K,
hence a™ = a. Since this is also obviously true for a = 0, we have that a” = a
for every a in K. Therefore, the polynomial x™ — x in Z [x] has m = p" dis-
tinct roots in K, namely all the elements of K. Thus x” — x factors in K[x] as

XM - x=(x - a)x - a) (x — ay),

where a,, a,, ..., a,, are the elements of K.

Everything we just said we already said, in more or less the same way,
in Section 6 of Chapter 5. Since we wanted these results to be fresh in the
reader’s mind, we repeated this material here.

We summarize what we just did in

Theorem 6.3.1. Let K be a finite field of characteristic p, p a prime.
Then K contains m = p” elements where n = [K:Z,], and the polynomial
x™ — x in Z,[x] splits into linear factors in K[x] as
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X" —x=(x - a)(x —a) o (x — ay,),

where aq, a,, ..., a,, are the elements of K.
Two natural questions present themselves:

1. For what primes p and what integers n does there exist a field having p"
elements?

2. How many nonisomorphic fields are there having p” elements?

We shall answer both questions in this section and the next. The an-
swers will be

1. For any prime p and any positive integer »n there exists a finite field
having p" elements.

2. Two finite fields having the same number of elements are isomorphic.

It is to these two results that we now address ourselves. First, we settle
the question of the existence of finite fields. We begin with a general remark
about irreducible polynomials.

Lemma 6.3.2. Let F be any field and suppose that p(x) is an irre-
ducible polynomial in F[x]. Suppose that g(x) in F[x] is such that in some ex-
tension field of F, p(x) and g(x) have a common root. Then p(x) divides q(x)
in F[x].

Proof. Suppose that p(x) does not divide g(x); since p(x) is irreducible
in F[x], p(x) and g(x) must therefore be relatively prime in F[x]. Thus there
are polynomials #(x) and v(x) in F[x] such that

u(x)p(x) + v(x)q(x) = 1.

Suppose that the element a in some extension K of F is a root of both p(x)
and g(x); thus p(a) = g(a) = 0. But then 1 = u(a)p(a) + v(a)g(a) = 0, a
contradiction. So we get that p(x) divides g (x) in F[x]. [J

Note that we can actually prove a little more, namely

Corollary. If f(x) and g(x) in F(x) are not relatively prime in K[x],
where K is an extension of F, then they are not relatively prime in F[x].

Let F be a field of characteristic p # 0. We claim that the polynomial
f(x) = x™ — x, where m = p", cannot have a multiple root in any extension
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field K of F. Do you remember what a multiple root of a polynomial is? We
refresh your memory. If g(x) is in F[x] and if K is an extension field of F, then
a in K is a multiple root of g(x) if g(x) = (x — a)*q(x) for some g(x) in K[x].

We return to the polynomial f(x) = x™ — x above. Since f(x) =
x(x™ ! - 1) and 0 is not a root of x™~! — 1, it is clearly true that 0 is a simple
(i.e., not multiple) root of f(x). Suppose that o € K, K D F, is a root of f(x);
thus a” = a. If y = x — a, then

fO=y"—y=@-a" ~@x-a)=x"-ad" - (x~ a
(since we are in characteristic p # 0 and m = p")
= x™ — x (because & = a) = f(x).
So
fR=f)=y"-y=x—-a" - (x— 0
=@ —a)((x - o)™ = 1),

and clearly this is divisible by x — « only to the first power, since x — a does
not divide (x — a)”~! — 1. So a is not a multiple root of f(x).
We have proved

Theorem 6.3.3. If n > 0, then f(x) = x™ — x, where m = p”, has no
multiple roots in any field of characteristic p.

We should add a word to the proof above to nail down the statement of
Theorem 6.3.3 as we gave it. Any field of characteristic p # 0 is an extension
of Z,, and the polynomial f(x) is in Z,[x]. So the argument above, with K
any field of characteristic p and F = Z,, proves the theorem in its given form.

We have exactly what we need to prove the important

Theorem 6.3.4. For any prime p and any positive integer n there ex-
ists a finite field having p” elements.

Proof. Consider the polynomial x™ — x in Z,[x], where m = p". By
Theorem 5.6.6 there exists a finite extension K of Z, such that in K[x] the
polynomial x™ — x factors as

X" —x = (x —a)(x —a) o (x —ay,),

where ay, a,, ..., a, are in K. By Theorem 6.3.3, x™ — x does not have any
multiple roots in K, hence the elements a,, a,, ..., a,, are m = p" distinct el-
ements. We also know that a,, a,, ..., a,, are all the roots of x” — x in K,
since x™ — x is of degree m.



Sec. 4 Finite Fields lll: Uniqueness 227

Let A = {a € K| a™ = a}; as we just saw, A has m distinct elements. We
claim that A is a field. If a, b € A, then a™ = a and b"™ = b, hence (ab)™ =
a™b™ = ab, thus ab € A. Because we are in characteristicp # 0 and m = p”,
(a+b)"=a"+b"=a+ b,hencea + bisin A.

Since A is a finite subset of a field and is closed with respect to sum and
product, A must be a subfield of K. Since A has m = p" elements, A is thus
the field whose existence was asserted in the statement of the theorem. With
this the theorem is proved. []

PROBLEMS

+1. Give the details of the proof of the Corollary to Lemma 6.3.2.

The next two problems are a repeat of ones given earlier in the book.

2. If f(x) = apx™ + ax" ' + -+ + a, is in F[x], let f'(x) be the formal
derivative of f(x) defined by the following equation: f'(x) = naox" !
+(n—Dax" 2+ -+ (n—iax""""'+..-+a,_,. Prove that:

@) (f(x) +g(x) =f'(x) +g'(x)
) (F()g(x) = f'(x)g(x) + f(x)g'(x) for all f(x) and g (x) in F[x]

*3, Prove that f(x) in F[x] has a multiple root in some extension of F if and
only if f(x) and f'(x) are not relatively prime.

4. If f(x) = x" — x is in F[x], prove that f(x) does not have a multiple root in
any extension of F if F is either of characteristic 0 or of characteristic
p # 0, where p does not divide n — 1.

5. Use the result of Problem 4 to give another proof of Theorem 6.3.3.

6. If Fis a field of characteristic p # 0, construct a polynomial with multiple
roots of the form x” — x, where p | (n — 1).

7. If K is a field having p" elements, show that for every m that divides n
there is a subfield of K having p™ elements.

4. FINITE FIELDS Illl: UNIQUENESS

Now that we know that finite fields exist having p" elements, for any prime p
and any positive integer n, we might ask: How many finite fields are there
with p" elements? For this to make any sense at all, what we are really asking
is: How many distinct nonisomorphic fields are there with p” elements? The
answer to this is short and sweet: one. We shall show here that any two finite
fields having the same number of elements are isomorphic.
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Let K and L be two finite fields having p” elements. Thus K and L are
both vector spaces of dimension n over Z,. As such, K and L are isomorphic
as vector spaces. On the other hand, K* and L* are both cyclic groups of
order p” — 1 by Theorem 6.2.4; hence K* and L* are isomorphic as multi-
plicative groups. One would imagine that one could put these two isomor-
phisms together to prove that K and L are isomorphic as fields. But it just
isn’t so. The proof does not take this direction at all. But the finiteness of K
and L together with these two isomorphisms (of two structures carried by K
and L) do suggest that, perhaps, K and L are isomorphic as fields. This is in-
deed the case, as we now proceed to show.

We begin with

Lemma 6.4.1. If g(x) in Z,[x] is irreducible of degree n, then
q(x) | (x™ — x), where m = p".

Proof. By Theorem 4.5.11 the ideal (g(x)) of Z [x] generated by g(x) is
a maximal ideal of Z,[x] since gq(x) is irreducible in Z,[x]. Let A =
Z,[x]/(q(x)); by Theorem 4.4.3, A is a field of degree n over Z,, hence has p”
elements. Therefore, u™ = u for every element u in A.

Let a = x + (gq(x)) be the coset of x in A = Z [x]/(q(x)); thus g(a) = 0
and g(x) is the minimal polynomial for a over Z,,. Since aisin A, a™ = a,s0 a
is seen as a root of the polynomial x” — x, where m = p". Thus x™ — x and
q(x) have a common root in A. By Lemma 6.3.2 we have that g(x) | (x™ — x). [

We are now in a position to prove the main result of this section.

Theorem 6.4.2. If K and L are finite fields having the same number of
elements, then K and L are isomorphic fields.

Proof. Suppose that K and L have p" elements. By Theorem 6.2.4, L*
is a cyclic group generated, say, by the element b in L. Then, certainly,
Z,(b)—the field obtained by adjoining b to Z,—is all of L. Since
[L:Z,] = n, by Theorem 5.3.2 b is algebraic over Z, of degree n, with
n = deg(q(x)), where g(x) is the minimal polynomial in Z [x] for b, and is ir-
reducible in Z ,[x].

The mapping :Z,[x] - L = Z,(b) defined by y(f(x)) = f(b) is a
homomorphism of Z,[x] onto L with kernel (g(x)), the ideal of Z,[x] gener-
ated by q(x). So L = Z [x]/(q(x)).

Because g(x) is irreducible in Z [x] of degree n, by Lemma 6.4.1 g(x)
must divide x” — x, where m = p”". However, by Lemma 6.3.1, the polyno-
mial x” — x factors in K[x] as

m

X" —x=(x —a)(x —ay) - (x —ay,),
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where a,, a,,..., a,, are all the elements of K. Therefore, g(x) divides
(x —a)(x —a,) - (x — a,). By the Corollary to Theorem 4.5.10, g (x) can-
not be relatively prime to all the x — a; in K[x], hence for some j, g(x) and
x — a; have a common factor of degree at least 1. In short, x — a; must
divide g(x) in K[x], so g(x) = (x — a;)h(x) for some h(x) in K[x]. There-
fore, g(a;) = 0.

Since q(x) is irreducible in Z,[x] and a4, is a root of g(x), g(x) must be
the minimal polynomial for q; in Z,[x]. Thus Z,(a;) = Z [x]/(q(x)) = L. This
tells us, among other things, that we have [Z,(a;):Z,] = n, and since
Z,(a;) C K and [K:Z,] = n we conclude that Z,(a;) = K. Therefore,
K = 7Z,(a;) = L. Thus we get the result that we are after, namely, that K and
L are isomorphic fields. This proves the theorem. []

Combining Theorems 6.3.4 and 6.4.2, we have

Theorem 6.4.3. For any prime p and any positive integer n there ex-
ists, up to isomorphism, one and only one field having p” elements.

5. CYCLOTOMIC POLYNOMIALS

Let C be the field of complex numbers. As a consequence of De Moivre’s
Theorem the complex number 6, = cos2w/n + i sin27/n satisfies 6, = 1
and 07 # 1if 0 < m < n. We called 6, a primitive nth root of unity. The other
primitive nth roots of unity are

6k = cos(-z—w—k) + i sin<z—77—k),
n n

where (k,n) =1land1 =k <n.

Clearly, 6, satisfies the polynomial x" — 1 in Q[x], where Q is the field
of rational numbers. We want to find the minimal (monic) polynomial for 6,
over Q.

We define a sequence of polynomials inductively. At first glance they
might not seem relevant to the question of finding the minimal polynomial
for 6, over Q. It will turn out that these polynomials are highly relevant to
that question for, as we shall prove later, the polynomial ¢,(x) that we are
about to introduce is a monic polynomial with integer coefficients, is irre-
ducible over Q, and, moreover, ¢,(6,) = 0. This will tell us that ¢,(x) is the
desired monic minimal polynomial for 6, over Q.

We now go about the business of defining these polynomials.
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Definition. The polynomials ¢, (x) are defined inductively by:
(@) ¢1(x) =x— 1
(b) If n > 1, then ¢,(x) = (x" — 1)/I1¢,(x), where in the product in the
denominator d runs over all the divisors of n except for n itself.
These polynomials are called the cyclotomic polynomials and ¢,(x) is
called the nth cyclotomic polynomial.

At the moment it is not obvious that the ¢,(x) so defined are even
polynomials, nor do we, as yet, have a clue as to the nature of the coefficients
of these polynomials ¢,(x). All this will come in due time. But first we want
to look at some early examples.

Examples

L ¢o(x) = (2 = 1)/h(x) = (&~ Di(x — ) =x + 1.
2. ¢5(x) = (x* = 1)/ (x) = (= 1)/ (x — 1) =x2 +x + L.

3.du(x) = (' = DI(d1(0)¢a(x)) = (* = Di(x - Dx + 1)) =
x*—-1)/(x*-1)=x*+1.
4. ps(x) = (x> - 1)/ (x) = (x> -1D)/x -1 =x*+x>+x2+x+ 1.

_ x® -1
3-96%) = 5 0 h0)&0)

_ x® -1
- Dx+FDEE+x+1)

=x3+1
x+1

=x*—-x+ 1.

We notice a few things about the polynomials above:

1. They are all monic polynomials with integer coefficients.

2. The degree of ¢,(x) is ¢(n), where ¢ is the Euler ¢-function, for
1 = n = 6. (Check this out.)

3. Each ¢,(x), for 1 = n = 6, is irreducible in Q(x). (Verify!)

4. Forl1 =n =6, 0,is aroot of ¢,(x). (Verify!)

These few cases give us a hint as to what the general story might be for
all ¢,(x). A hint, yes, but only a hint. To establish these desired properties
for ¢,(x) will take some work.

To gain some further insight into these polynomials, we consider a par-
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ticular case, one in which n = p™, where p is a prime. To avoid cumbersome
subscripts, we shall denote ¢,(x) by ¥ (x), where n = p™. The prime p will
be kept fixed in the discussion. We shall obtain explicit formulas for the
" (x)’s and determine their basic properties. However, the method we use
will not be applicable to the general case of ¢,(x). To study the general sit-
uation will require a wider and deeper set of techniques than those needed
for ¢ (x).

We note one simple example. If p is a prime, the only divisor of p that
is not p itself is 1. From the definition of ¢,(x) = ¢! (x) we have that

xP -1
x—1

yPx) = ¢, (x) = =xP14+ o+ x + 1

Note that in studying the Eisenstein Criterion we showed that this polyno-
mial is irreducible in Q(x).
What can we say for the higher ™ (x)’s?

Lemma 6.5.1. Forallm =1,

Pm._l
(m)(y =_)£______._=1+xpm
d’ () xp'"1_1

Ty o2 4ol 4 et

Proof. We go by induction on m.

If m = 1, we showed above that yD(x) = (x» — 1)/(x — 1) =1+ x +
x*+ .-+ xP7! so the lemma is true in this case.

Suppose that ¢ = (x* — 1)/(x? " — 1) for all r < m. Consider
™ (x). Since the only proper divisors of p™ are 1, p, p?, ..., p™ !, from the
definition of ¥ (x) we have that

m _ xP" -1
R e O e )

By induction, ¢ (x) = (x?" — 1)/(x*"~" — 1) for r < m, hence

(e = DyP (x) - - - ™ Ox)

xP—1xPP -1 xP" ' -1 m-1
_—.(x—l)x_lxp—l...xpm_z—lzxp _1.
But then
oy = X =1
w (x) xpm—l _ 1
completing the induction and proving the lemma. []
Note here that
pm _ 1 — B —
lll(m)(x)zx.f)m_—l—lzl-'-xp 1+...+x(P 1)p 1
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is a monic polynomial with integer coefficients. Its degree is clearly p™ (p — 1),
which is indeed ¢(p™). Finally, if 6 is a primitive p™th root of unity, then
67" = 1, but 97" # 1, hence ¥ (6) = 0; so 6 is a root of ™ (x). The final
thing we want to know is: Is /™ (x) irreducible over Q?

Note that

Yy (x) =1 + xP™ N4+ oo 4 xe-DpTl — ¢(1)(xp'"‘1)

and we know that ¢(x) is irreducible in Q[x]. We shall use the Eisenstein
Criterion to prove that ¢ (x) is irreducible in Q[x].

We digress for a moment. If f(x) and g(x) are two polynomials with in-
teger coefficients, we define f(x) = g(x) mod p if f(x) = g(x) + pr(x), where
r(x) is a polynomial with integer coefficients. This is equivalent to saying that
the corresponding coefficients of f(x) and g(x) are congruent mod p. Ex-
panding (f(x) + g(x))? by the binomial theorem, and using that all the bino-
mial coefficients are divisible by p, since p is a prime, we arrive at
(f(x) + g(x))” = f(x)" + g(x)” mod p.

Given f(x) = apx" + a;x"" ' + - -+ + a,, where the a; are integers, then,
by the above,

f(xP = (apx" + ax" ' + -+ - +a, Y =alx" + alx\""P + ... + g?
=ayx"? + ax""Y" + .- - + g, modp,

the latter congruence being a consequence of Fermat’s Theorem (the Corol-
lary to Theorem 2.4.8). Since f(x?) = apx™ + a,""V? + --- + a,, we obain
that

f(x?)= f(x)? modp.

Iterating what we just did, we arrive at

fx**)=f(x)7" mod p

for all nonnegative k.
We return to our ™ (x). Since " (x) = ¢ (x*""") we have, from the
discussion above, that ™ (x) = ¢V(x*""") mod p. Therefore,
(1) pm—1 _ (x + P — 1\ _ (x + 1)7 — 1\
v+ ((x+l)—1 x
p(p=1) ,- ., plp=1)

pm—l
=<x”_1+px”_2+—§———— + - 5 x+p>

= ¢ D(x)?""'?"D mod p = y(x + 1) mod p.
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This tells us that
t//('")(x + 1) = xPTemD 4 pr(x),

where r(x) is a polynomial with integer coefficients. So all the coefficients of
™ (x + 1), with the exception of its leading coefficient 1, are divisible by p.
If we knew for some reason that the constant term of A(x) = ¢ (x + 1) was
not divisible by p2, we could apply the Eisenstein Criterion to show that 4 (x)
is irreducible. But what is the constant term of A(x) = ™ (x + 1)? It is
merely #(0) = ¢ (1), which, from the explicit form of ¥ (x + 1) that we
found four paragraphs earlier, is exactly p. Thus A (x) is irreducible in Q[x],
that is, ¢/ (x + 1) is irreducible in Q[x]. But this immediately implies that
™ (x) is irreducible in Q[x].
Summarizing, we have proved

Theorem 6.5.2. For n = p™, where p is any prime and m any nonneg-
ative integer, the polynomial ¢, (x) is irreducible in Q[x].

As we pointed out earlier, this is a very special case of the theorem we
shall soon prove; namely, that ¢,(x) is irreducible for all positive integers .
Moreover, the result and proof of Theorem 6.5.2 play no role in the proof of
the general proposition that ¢,(x) is irreducible in Q@[x]. But because of the
result in Theorem 6.5.2 and the explicit form of ¢,(x) when n = p™, we do
get a pretty good idea of what should be true in general. We now proceed to
the discussion of the irreducibility of ¢,(x) for general n.

Theorem 6.5.3. For every integern =1,
¢, (x) = (x — 9(1)) s (x — g(w(n))),
where 01, @, ... %™ are the ¢(n) distinct primitive nth roots of unity.

Proof. We proceed by induction on n.

If n = 1, then ¢;(x) = x — 1, and since 1 is the only first root of unity,
the result is certainly correct in this case.

Suppose that result is true for all m < n. Thus, if d | n and d # n, then,
by the induction, ¢,(x) = (x — %) --- (x — 6%@)), where the 8% are the
primitive dth roots of unity. Now

' =1=x =0 =8 (x = §),

where the {; run over all nth roots of unity. Separating out the primitive nth
roots of unity in this product, we obtain

"= 1= (x — M) (x — 9)y(x),
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where v(x) is the product of all the other x — ¢; thus by our induction hy-
pothesis v(x) is the product of the ¢,(x) over all divisors d of n with the ex-
ception of d = n. Thus, since

" — —gy. .. — gle(n)
) = Cm ) Ol 6t
= (x — D) (x — 6D) - (x — §eD),

we have proved the result claimed in the theorem. []

From the form of ¢,(x) in Theorem 6.5.3 we immediately see that
¢,(x) is a monic polynomial in C[x] of degree ¢(n). Knowing this, we prove
that, in fact, the coefficients of ¢, (x) are integers. Why is this true? Proceed-
ing by induction on n, we may assume this to be the case if d|n and d # n.
Therefore, if v(x) denotes the polynomial used in the proof of Theorem
6.5.3, then (x" — 1)/v(x) = ¢,(x) € C[x], hence v(x) | x" — 1 in C[x]. But, by
the long-division process, dividing the monic polynomial v(x) with integer
coefficients into x” — 1 leads us to a monic polynomial with integer coeffi-
cients (and no remainder, since v(x) | (x" — 1) in C[x]). Thus (x" — 1)/v(x) =
¢,(x) is a monic polynomial with integer coefficients. As we saw, its degree is
¢(n). Thus

Theorem 6.5.4. For every positive integer n the polynomial ¢,(x) is a
monic polynomial with integer coefficients of degree ¢(n), where ¢ is the
Euler ¢-function.

Knowing that ¢,(x) is a polynomial, we can see that its degree is ¢(n)
in yet another way. From ¢,(x) = (x" — 1)/v(x), using induction on n,
deg(¢,(x)) = n — deg(v(x)) = n — Z¢(d), the sum over all divisors d of n
other than d = n, from the form of v(x). Invoking the result of Theorem
6.2.1, n — 2¢(d) = ¢(n), where again this sum is over all d|n, d # n. We
thus obtain that deg(¢,(x)) = ¢(n).

The result we are about to prove is without question one of the most
basic ones about cyclotomic polynomials.

Theorem 6.5.5. For every positive integer n the polynomial ¢,(x) is
irreducible in Q[x].

Proof. Let f(x) in Q[x] be an irreducible polynomial such that
f(x) | ¢,(x). Thus ¢,(x) = f(x)g(x) for some g(x) in Q[x]. By Gauss’ Lemma
we may assume that both f(x) and g(x) are monic polynomials with integer
coefficients, thus are in Z[x]. Our objective is to show that ¢,(x) = f(x); if
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this were the case, then, since f(x) is irreducible in Q[x], we would have that
¢, (x) is irreducible in Q[x].

Since ¢,(x) has no multiple roots, f(x) and g(x) must be relatively
prime. Let p be a prime number such that p does not divide n. If 8 is a root
of f(x), it is then a root of ¢,(x), hence by Theorem 6.5.3 6 is a primitive nth
root of unity. Because p is relatively prime to n, 6? is also a primitive nth
root of unity, thus, by Theorem 6.5.3, 67 is a root of ¢,(x). We therefore
have that 0 = ¢,(67) = f(67)g(6?), from which we deduce that either f(67) =
Oorg(6?) =0.

Our aim is to show that f(67) = 0. Suppose not; then g(6?) = 0, hence
6 is a root of g(x?). Because 6 is also a root of the irreducible polynomial
f(x), by Lemma 6.3.2 we obtain that f(x) | g(x”). As we saw in the course of
the proof of Theorem 6.5.2, g(x?) = g(x)? mod p.

Let J be the ideal in Z generated by p; by the Corollary to Theorem
4.6.2, Z[x]/J[x] = Z,[x], which means that reducing the coefficients of any
polynomial mod p is a homomorphism of Z[x] onto Z,[x].

Since all the polynomials ¢,(x), v(x), f(x), and g(x) are in Z[x], if
&,(x), (), f(x), and g(x) are their images in Z,[x], all the relations among
them are preserved going mod p. Thus we have the relations x” — 1 =
¢, (X)T (x), b, (x) =f(x)g (x) and f(x)|g(x") = g(x)”.

Therefore, f(x) and g(x) have a common root, a, in some extension K
of Z,. Now x" — 1 = ¢, (x)U(x) =f(x)g () , hence a, as a root of both f(x)
and g(x), is a multiple root of x” — 1. But the formal derivative (x" — 1)’ of
x" — 1is nx""! # 0, since p does not divide n; therefore, (x" — 1)’ is rela-
tively prime to x” — 1. By the result of Problem 3 of Section 3 the polyno-
mial x" — 1 cannot have a multiple root. With this contradiction arrived at
from the assumption that 6 was not a root of f(x), we conclude that when-
ever 6 is a root of f(x), then so must 6” be one, for any prime p that does not
divide n.

Repeating this argument, we arrive at: 6’ is a root of f(x) for every in-
teger r that is relatively prime to n. But 6, as a root of f(x), is a root of ¢,(x),
so is a primitive nth root of unity. Thus 6" is also a primitive »nth root of unity
for every r relatively prime to n. By running over all r that are relatively
prime to n, we pick up every primitive nth root of unity as some such 6".
Thus all the primitive nth roots of unity are roots of f(x). By Theorem 6.5.3
we see that ¢,(x) = f(x), hence ¢,(x) is irreducible in Q[x]. [J

It may strike the reader as artificial and unnatural to have resorted to
the passage mod p to carry out the proof of the irreducibility of a polynomial
with rational coefficients. In fact, it may very well be artificial and unnatural.
As far as we know, no proof of the irreducibility of ¢, (x) has ever been given
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staying completely in @[x] and not going mod p. It would be esthetically sat-
isfying to have such a proof. On the other hand, this is not the only instance
where a result is proved by passing to a related subsidiary system. Many the-
orems in number theory—about the ordinary integers—have proofs that ex-
ploit the integers mod p.

Because ¢,(x) is a monic polynomial with integer coefficients which is
irreducible in Q[x], and since 6,, the primitive nth root of unity, is a root of
¢, (x), we have

Theorem 6.5.6. ¢, (x) is the minimal polynomial in Q[x] for the primi-
tive nth roots of unity.

PROBLEMS

1. Verify that the first six cyclotomic polynomials are irreducible in Q[x] by a
direct frontal attack.

2. Write down the explicit forms of:
(@) ¢1o(x).
(b) é15(x).
(©) d20(x).
3. If (x™ — 1) | (x" — 1), prove that m | n.
4. If a > 1is an integer and (a™ — 1) | (a" — 1), prove that m | n.

5. If K is a finite extension of Q, the field of rational numbers, prove that
there is only a finite number of roots of unity in K. (Hint: Use the result of
Problem 10 of Section 2, together with Theorem 6.5.6.)

6. LIOUVILLE’S CRITERION

Recall that a complex number is said to be algebraic of degree n if it is the
root of a polynomial of degree n over Q, the field of rational numbers, and is
not the root of any such polynomial of degree lower than n. In the terms used
in Chapter 5, an algebraic number is a complex number algebraic over Q.

A complex number that is not algebraic is called transcendental. Some
familiar numbers, such as e, 7, e”, and many others, are known to be tran-
scendental. Others, equally familiar, such as e + 7, e, and 7, are suspected
of being transcendental but, to date, this aspect of their nature is still open.

The French mathematician Joseph Liouville (1809-1882) gave a crite-
rion that any algebraic number of degree n must satisfy. This criterion gives
us a condition that limits the extent to which a real algebraic number of de-
gree n can be approximated by rational numbers. This criterion is of such a
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nature that we can easily construct real numbers that violate it for every
n > 1. Any such number will then have to be transcendental. In this way we
shall be able to produce transcendental numbers at will. However, none of
the familiar numbers is such that its transcendence can be proved using Liou-
ville’s Criterion.

In this section of the book we present this result of Liouville. It is a sur-
prisingly simple and elementary result to prove. This takes nothing away
from the result; in our opinion it greatly enhances it.

Theorem 6.6.1 (Liouville). Let a be an algebraic number of degree
n = 2 (i.e., a is algebraic but not rational). Then there exists a positive con-
stant ¢ (which depends only on a) such that for all integers u, v with
v>0,|a—uw|>cn"

Proof. Let a be a root of the polynomial f(x) of degree n in Q[x],
where Q) is the field of rational numbers. By clearing of denominators in the
coefficients of f(x), we may assume that f(x) = rox" + rix" ' + -+ + r,,
where all the r; are integers and where r, > 0.

Since the polynomial f(x) is irreducible of degree n it has n distinct
roots a = a,, a,, ..., a, in C, the field of complex numbers. Therefore, f(x)
factors over C as f(x) = ro(x — a)(x — a,) -+ (x — a,). Let u, v be integers
with v > 0; then

-1
u rou” = riu” r.o_u
f(—>=0 + n—1 +...+nv1 +rna
hence
n u n n—1 n—1 n
v f(;) =ru* +ru" v+ s+, + o

is an integer. Moreover, since f(x) is irreducible in Q[x] of degree n = 2, f(x)
has no rational roots, so v"f(u/v) is a nonzero integer, whence | v"f(u/v) | = 1.
Using the factored form of f(x), we have that

5) =)= 0E) o) () )

hence
wy | | f (u/v)]
v] YT rluv) = ayf - [(uiv) — a,
~ v"| f (ulv)|
T r ) — ayf - - |(ulv) — a]
1

= .
rv”|(u/v) = ay| - - - |(uv) — a,|
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Let s be the largest of |a|, |a,|, .. ., |a,|. We divide the argument accord-
ing as |u/v| > 2s or |ufv| = 2s. If |u/v| > 2s, then, by the triangle inequality,
la — (u/v)| = |ujv| — |a| > 2s — s = s, and, since v = 1, |a — (u/v)| > s/v".

On the other hand, if |u/v| < 2s, then, again by the triangle inequality,
la; — (u/v)| = |a;| + |u/v| = s + 25 = 3s. Therefore,

o)

so that 1/t = 1/(3s)""! = 1/(3" 1s"1). Going back to the inequality above
that |a — (u/v)| = 1/[rev*la, — (w/v)| --- |a, — (u/v)|], we have that
la — (u/v)| = 1/(ry3" " s" v"). These numbers ry, 3"~ !, s~ ! are determined
once and for all by a and its minimal polynomial f(x) and do not depend on u
orv. If welet b = 1/(ry3" s" 1), then b > 0 and |a — (u/v)| > b/v". This
covers the second case, where |u/v| < 2s.

If c is a positive number smaller than both b and s, we have from the
discussion that |a — u/v| > c/v" for all integers u, v, where v > 0, thereby
proving the theorem. []

t = = (3s)" 71,

Let’s see the particulars of the proof for the particular case a = V2.
The minimal polynomial for a in Q[x] is f(x) = (x — a)(x + a), soa = a, and
—a = a,. So if u and v are integers, and v > 0, then

o)A ) AR )<

an integer. So [v*f(u/v)] = 1 = 1/v% The s above is the larger of |V2]
and | — V2|; that is, s = V2. Also, the b above is 1/(32(V2)2™)) = 1/(3V2),
so if ¢ is any positive number less than 1/(3\/5), then |V2 — ufv| > cjv?.

What the theorem says is the following: Any algebraic real number has
rational numbers as close as we like to it (this is true for all numbers), but if
this algebraic real number a is of degree n = 2, there are restrictions on how
finely we can approximate a by rational numbers. These restrictions are the
ones imposed by Liouville’s Theorem.

How do we use this result to produce transcendental numbers? All we
need do is to produce a real number 7, say, such that whatever positive inte-
ger n may be, and whatever positive ¢ we choose, we can find a pair of inte-
gers u, v, with v > 0 such that |7 — u/v| < ¢/v". We can find such a 7 easily by
writing down an infinite decimal involving 0’s and 1’s, where we make the 0’s
spread out between the 1’s very rapidly. For instance, if 7 =
0.10100100000010 ... 010 ..., where the 0’s between successive 1’s go like
m!, then 7 1s a number that violates Liouville’s Criterion for every n > 0.
Thus this number 7 is transcendental.



Sec. 7 The Irrationality of & 239

We could, of course, use other wide spreads of 0’s between the 1’s—
m™, (m!)?, and so on—to produce hordes of transcendental numbers. Also,
instead of using just 1’s, we could use any of the nine nonzero digits to obtain
more transcendental numbers. We leave to the reader the verification that
the numbers of the sort we described do not satisfy Liouville’s Criterion for
any positive integer n and any positive c.

We can use the transcendental number 7 and the variants of it we de-
scribed to prove a famous result due to Cantor. This result says that there is
a 1-1 correspondence between all the real numbers and its subset of real
transcendental numbers. In other words, in some sense, there are as many
transcendental reals as there are reals. We give a brief sketch of how we
carry 1t out, leaving the details to the reader.

First, it is easy to construct a 1-1 mapping of the reals onto those reals
strictly between 0 and 1 (try to find such a mapping). This is also true for the
real transcendental numbers and those of them strictly between 0 and 1. Let
the first set be A and the second one B, so B C A. Then, by a theorem in set
theory, it suffices to construct a 1-1 mapping of A into B.

Given any number in A, we can represent it as an infinite decimal
0.a;a,...a,...,where the a, fall between 0 and 9. (We now wave our hands
a little, being a little bit inaccurate. The reader should try to tighten up
the argument.) Define the mapping f from A to B by f(0.aia, ... a,...) =
0.a,0a,00a5000000a, . . . ; by the Liouville Criterion, except for a small set of
a,, a,,...,a,,...,the numbers 0.a,0a,00a;000000a, ... are transcendental.
The f we wrote down then provides us with the required mapping.

One final word about the kind of approximation of algebraic numbers
by rationals expressed in Theorem 6.6.1. There we have that if a is real alge-
braic of degree n = 2, then |a — u/v| > c/v" for some appropriate positive c.
If we could decrease the n to |a — u/v| > c¢/v™ for m < n and some suitable ¢
(depending on a and m), we would get an even sharper result. In 1955 the
(then) young English mathematician K. F. Roth proved the powerful result
that effectively we could cut the » down to 2. His exact result is: If a is alge-
braic of degree n = 2, then for every real number r > 2 there exists a positive
constant ¢, depending on a and r, such that |a — u/v| > c/v" for all but a finite
number of fractions u/v.

7. THE IRRATIONALITY OF 1T
As we indicated earlier, Lindemann in 1882 proved that 7 is a transcendental

number. In particular, from this result of Lindemann it follows that 7 is irra-
tional. We shall not prove the transcendence of 7 here—it would require a
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rather long detour—but we will, at least, prove that = is irrational. The very
nice proof that we give of this fact is due to I. Niven; it appeared in his paper
“A Simple Proof That 7 Is Irrational,” which was published in the Bulletin
of the American Mathematical Society, vol. 53 (1947), p. 509. To follow
Niven’s proof only requires some material from a standard first-year calculus
course.

We begin with

Lemma 6.7.1. If u is a real number, then nh_l}}’o u'ln! = 0.

Proof. If u is any real number, then e” is a well-defined real number
ande*=1+u+u?2! +u*3'+---+u"/n! +---. Theseries 1 + u + u?/2! +
-+« + u"/n! + --- converges to e"; since this series converges, its nth term
must go to 0. Thus lim w"/n! = 0.

We now present Niven’s proof of the irrationality of .

Theorem 6.7.2. 7ris an irrational number.

Proof. Suppose that 7 is rational; then 7 = a/b, where a and b are pos-
itive integers.

For every integer n > 0, we introduce a polynomial, whose properties
will lead us to the desired conclusion. The basic properties of this polynomial
will hold for all positive n. The strategy of the proof is to make a judicious
choice of n at the appropriate stage of the proof.

Let f(x) = x"(a — bx)"/n!, where 7 = a/b. This is a polynomial of de-
gree 2n with rational coefficients. Expanding it out, we obtain

apx” + ax"' + - + g, x*"
fx) = , ,
n!
where
_ —1)n! i
a, = a",a; = —na""'b, .. —(-——)——a" ‘b, ...,a, = (—1)"b"

8T (= D)

are integers.

We denote the ith derivative of f(x) with respect to x by the usual no-
tation f(x), understanding f©(x) to mean f(x) itself.

We first note a symmetry property of f(x), namely, that f(x) =
f(m — x). To see this, note that f(x) = (b"/n!)x" (7 — x)", from whose form it
is clear that f(x) = f(7 — x). Since this holds for f(x), it is easy to see, from
the chain rule for differentiation, that f(x) = (—=1)if® (7 — x).
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This statement about f(x) and all its derivatives allows us to conclude
that for the statements that we make about the nature of all the f©(0), there are
appropriate statements about all the f® ().

We shall be interested in the value of £©(0), and (), for all nonneg-
ative i. Note that from the expanded form of f(x) given above we easily ob-
tain that f®(0) is merely i! times the coefficient of x’ of the polynomial f(x).
This immediately implies, since the lowest power of x appearing in f(x) is
the nth, that f®(0) = 0 if i < n. For i = n we obtain that f(0) = ila;_,/n!;
since i = n, i!/n! is an integer, and as we pointed out above, a;_, is also an
integer; therefore f)(0) is an integer for all nonnegative integers i. Since
fO(m) = (—1)'f(0), we have that f¥(7) is an integer for all nonnegative
integers i.

We introduce an auxiliary function

F(x) = f(6) = fO@) + -+ + (=17 (),

Since " (x) = 0 if m > 2n, we see that

%i‘f = Flx) = fO(x) = fO0) + -+ + (- 1)F()

= ~F(x) + f(2)

Therefore,

%c (F'(x)sinx — F(x) cosx) = F{x)sinx + F’(x) cos x
— F’(x) cos x + F(x) sin x
= (F"(x) + F(x))sinx = f(x) sin x.

From this we conclude that

f f(x)sinx dx = [F'(x)sin x — F(x) cos x]g
0
= (F'(m)sin m — F(m) cos ) — (F'(0) sin 0 — F(0) cos 0)
= F(m) + F(0).
But from the form of F(x) above and the fact that all f?(0) and f@ () are
integers, we conclude that F(7) + F(0) is an integer. Thus [{f(x) sin x dx is
an integer. This statement about [ f(x) sin x dx is true for any integer n > 0

whatsoever. We now want to choose n cleverly enough to make sure that the
statement “[7 f(x) sin x dx is an integer” cannot possibly be true.
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We carry out an estimate on [§ f(x) sin x dx. For 0 < x < 7 the func-
tion f(x) = x"(a — bx)"/n! = w"a"/n! (since a > 0), and also 0 < sinx < 1.
Thus 0 < [7 f(x) sinx dx < [I7"a"/n! dx = 7" 'a"/n!.

Let u = ma; then, by Lemma 6.7.1, lim u"/n! = 0, so if we pick n large
enough, we can make sure that u"/n! < ln/'zr, hence 7"*'a"/n! = mu"/n! < 1.
But then [§ f(x) sin x dx is trapped strictly between 0 and 1. But, by what we
have shown, [ f(x) sin x dx is an integer. Since there is no integer strictly be-
tween 0 and 1, we have reached a contradiction. Thus the premise that 7 is
rational was false. Therefore,  is irrational. This completes the proof of
the theorem. [
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