fi / ‘«’ ////

AN udtds iy LA

sty ao

\-um.&{"' s ama

Pt

g e e

b ARG W

: ;':‘_-Wﬂlﬂ:".lmﬂ-‘vn ~—
ks

Zlm" =qTW e\ i E

T T T Rk e Ty =y A TR AT N WSS mETEL B0 T A N T, T e

Data-palooza

2t JE -a v Em v e B
"

)

\ 7, y / y | 4
4 - / | ' I/ ff |
1 /L 'J 1 |
J i 1

\ A\ N
) T) Y &\ N

in this segment, we're going to focus on how
languages manage data (types, variables & vaiuves).

H reference

mark and sweep
,.object reference
/§ narrowrng

E 7

globalsubtype
variable

Your goal is to be able to pick up a new language and quickly
understand how it manages types, variables and values.

Mobile User

A What's a variable?
F u

a = 3.14159

el 3.14159

A What's avalue:
B N

Answers:
A variable is a syriticlic name associated with a storage location that contains a value or a pointer (to a value).
Avalue is a piece of data with a type, that is either referred to by a variable or computed by a program expression,

Mobile User

Mobile User

What are all the facets that make up a variable?

I'll give you some hints...
Higher RAM Addresses

Local variables
Parameters

Thg St_ac.k

Dynamically-alloc

- .
Frmp | L s e e L
\G1(0]0 r"j' var .."'."’..‘l] NES

C 4 FaE . - k: -~ | A C
I“-{”::]| .: Vdadllc “1}—_ >
- b y ¥ e -

Static Data

Mobile User

What are all the facets that make up a variable?
'll give you some hints...

Whrien/where the variable name is visible The timeframe over which a variable The memory slots that holds the \ralue

Can avariable's value be changed ;
9 to code exists

It
How a variable name is connected to its How you refer to the variable

The value being stored and its type
current value

Ok, guess!

Mobile User

Mobile User

What are all the facets that make up a value?

Almost all languages stipulate that names should contain valid characters
Almost all languages stipulate that names should not be the same as keywords or
constants
Most languages have a rule that disallows spaces in variable names
Some languages have rules about special characters in names, some enforce length
restrictions, and some even enforce some sort of case sensitivity rule.

Variable types
What can you infer about a value, given its type?

The set of legal values it can hold
The operations we can perform on it
How much memory you need
How to interpret the bytes stored in RAM
How values are converted between types

Mobile User
Almost all languages stipulate that names should contain valid characters
Almost all languages stipulate that names should not be the same as keywords or constants
Most languages have a rule that disallows spaces in variable names
Some languages have rules about special characters in names, some enforce length restrictions, and some even enforce some sort of case sensitivity rule.

Mobile User
Variable types
What can you infer about a value, given its type?

The set of legal values it can hold
The operations we can perform on it
How much memory you need
How to interpret the bytes stored in RAM
How values are converted between types

What are all the facets that make up a value?
'll give you some hints...

How you ferto the
' fia, °

The memory slots
that holds the value

A value always

e

has a type

The timeframe over
which a value exists

The value itself

\ e ——

When/v are the
varia' en. meis
vic Jletoc e

How av:s 1ble name
iscor .ecu 1toits
r ¢rentve e

Can a value be
changed

Mobile User

')%“ Variable Name Trivia!

Question: Why do most loops idiomatically use a
variable named i or j for iteration?

(i.e., double).

Answer:

It all goes back to the first standardized programming language: Fortran

In Fortran, if you didn't explicitly declare a variable...

Then if the variable name begins with oro - z its type was defaulted a r
And if the variable's name begins with i - n its type was defaulted to an integer.

I compute factorials from 1 to 10
integer nfact
nfact = 1
do i =1, 10
nfact = nfact * i
print*, i, "l is ", nfact
end do

"19b1u1 ue 01 payneyap sem adA1 sy U - | yHm suibag SWeu s,3|qeeA 3Y3 JI pUY

‘(3]gnop "“a°1) [ea. e payneap sem adA} s Z - 010 U - e UM sulbaqg sweu a|gelieA ay3 jl uay |
“3|qelieA e aue|dap Ajad1|dxa 3 upip NoA Ji ‘uesoA uj

ueipo4 :abenbue| bujwweiboid pazipiepuess 1s.1y 93 01 3deq 5906 ||e Y

Jamsuy

Mobile User

Let's do some Deep Dives

Types

We'll understand how types are used, how languages check for valid types,
and how they convert between types

Scoping and Lifetime
We'll learn how languages decide a variable's scope and lifetime

Memory Safety
We'll learn how languages safeguard reads/writes to memory

Mutability

We'll learn how the mutability of variables impacts code correctness

Binding Semantics
We'll learn how languages associate variable names with values

Mobile User

Types! Types! Types!

&._._
- ¥

»

\ -
et

&

Take a new language and figure out what kind of typing system it uses.

o

By the end of this section, you should be able to:

P

Understand the implications of that typing system so you can write correct
programs in that language.

Mobile User

What is a Type?

'J\"‘ What is a type and what are all the things a type specifies?
Actually, they’re not! It is possible to have a language with no types. Assembly
languages are one such example of languages with no type system. They just have

a reqister that holds a 32 (or 64) bit value. The value could represent anything (an
integer, float, pointer, etc.). BLISS is another example of a language with no types.

Mobile User
Actually, they’re not! It is possible to have a language with no types. Assembly languages are one such example of languages with no type system. They just have a register that holds a 32 (or 64) bit value. The value could represent anything (an integer, float, pointer, etc.). BLISS is another example of a language with no types.

What is a Type?

'X" What is a type and what are all the things a type specifies?

A type is a classification that is used to identify a category of data.

A type defines a range of values, size and encoding, what operations we can
perform on it, where it can be used, and how 1t's converted/cast to other types.

Range of Values Size and Encoding Operations Usage Context Conversions/Casts
unsigried char 0 255 char l a .)
sighed char 128 127 short int 2 int: +, -, %, /, ... e - hT .
unsigned short int 0 65535 nt 2 I \ = R
signedishostint 32768 32767 long int 4 bool: &&, ”1 : ¥ “ - shj" .
unsigned int 0 65535 - + o s g p " - .
signed int -32768 32767 - lJm 0000 ot Nerd' StUdY() . [ehar |—=[i |—=[float |—>[boclsan |
unsigned long int 0 4294967295 . AN ' l}‘ﬁi
signedlongint | 2147483648 2147482647 oozt |

[teng |— double |
_c\1onn 0100

Mobile User

What Do Languages Use Types For?

Defining Variables Type Checking Type Inference
—\—____/ﬂ P

int age ; ; var a =
———— print(type(a)) // "int

Type Casting , Polymorphism

float #—=73714 Dog d; Dog d;
ipt'i = f; // conversion Mimal *a = &d; // cast Animal *3 = &d;
a->talk();) // "woof!"
—_— —

Generics/Templates

fist<int> stats;
‘map<str‘ing, int> dict;

e —

Mobile User

Variable Types?

X Inatypedlanguage, must
¥ N everyvariable have a type?
very v v *ypévvﬁ/

‘/,Jlg;&) (

ng\ﬁcm“
7

// C++

-

void foo() {
int x;

-- Haskell
f x =

let exp = 2f3
in -
x"exp

&
1 o o
A mitr”

o

. A
v\\

Tl]

Yot

Mo! If a given variabile is "bound” to a single value,
then it can be said to have a type. Otherwise not!

That said, a value is always associated with a type.

V4A

W~

\X§ (‘_‘

= S35 Zk?
/< cnvcﬂ/
Python |
def foo(q): ’
if q:

x = "What's my type?"

e

(f -~
\;D C;Al/y\"/\7

)(l /\ "9dA1 e yum pajeidosse shkemje’si an| plesiey]
fq j1ou asImIBY3Q "9dA e aney 01 pies aq 1 uayl

Mobile User

Mobile User

Mobile User

Types of Types

X" Question: How many different types of types can you name?

Primitives

C222? E?77?

Composites

Types of Types

'k‘ Question: How many different types of types can you name?

Primitives

et U
Saabeery

190 Hﬁg{\fp (= Cyﬂa’l) hedtrs | port
Composites M

o P
Aot | clpgo | Shivz

Mobile User

in languages like Pythwgw@g ject reference, this lets you “change

'3 primitive type’s value!
'A‘ Question: How many different types of types can you name?

What's a generic type?

Haven't heard of boxed types? /v\;,1

A generic type is a type that is parameterized with one or more type parameters, e.g.:
A boxed type is just an object whose only data member is a primitive (like

template <class T> anint or a double). /pC)Ar_
class Collection {
public: class Integer {
void add(T item) { arr_[count++] = item; } public:
L. int get() const { return val_; }
private: private:
T arr_[MAX_ITEMS]; int val_;
int count = 9; };

}s

Haven't heard of unions (aka variants)?

Haven't heard of enumerated types?
union holds one_of {

int i; double d; string s; enum Mood {Happy, Sad, Excited, Silly};
}
int main() { \ ‘/\E{WU VI C\J

int main() { Mood m;
holds_one_of x; m = Excited;

x.i = 10; // x holds an int now if (m == Sad) cout << "Sorry!"; (%\jt] (.n\,/(a&/' (

X.S Carey" // now x holds a string }

}

Mobile User
In languages like Python that pass by object reference, this lets you “change” a primitive type’s value!

Mobile User

User-defined Types /..~ -

Beyond built-in types like int, double and string... 7\(7/‘@
languages also let users define new types. @

For example, every time you define a... The language implicitly defines...

class Circle §

’ public:
v 4 Circle(floatrad){...}

Notice that a class float get_area(){...}
is NOT a type... private:

5

A type named Circle

struct Weather §{
double temperature;
double humidity;
bool sunny, cloudy;

but its définition creates
one!
A type named Weather

__/

’ Afinterfaceis a };
list of function
declarations—it's ¢num Days §
like a fully-abstract Mon, Tues, Wed,
class with no Thurs, Fri, Sat, Sun

implementations 15
or fields.

A type named
DEWS

interface Washable {
void wash();

void dry();

I

A type named Washable

Mobile User

Supertypes and Subtypes

As we learned in CS32, some types exhibit a supertype/subtype relationship,
where a@pe inherits properties and behaviors from its supertype:
/H__—————--

The primary way we define such typing relationships is via class inheritance:

class Person {
public:

virtual void eat() — :
. . Implicitly defines a

{ cout << "Nom nom"; } class

virtual void sleep() s
{ cout << "Zzzzz"; }

}s5
class Nerd: public Person {
public:

virtual void study()

{ cout << "Learn, learn, learn"; }
}s

Implicitly defines &

Mobile User

/

Qu{f

In addition, we can define supertype/subtype relationships

éww

Supertypes and Subtypes

class Washable {

virtual void wash() = 0;
virtual void dry() = 0;

Ik

// C++ Interface

—21

(A

class Car: public Washable {
virtual

}

cout

virtual

}

cout

void wash() {

<< "Use soap and water.";

void dry() {

<< "Use dish towel.";

)

WEHELE
interface

Car class

ia interface inheritance:

Washable

Implicitly defines a
type

subtype of

Mobile User

Supertypes and Subtypes

Since we know all

class Person {

pUbliC . Persons can eat and
.) . sleep...
virtual void eat() o
{ cout << "Nom nom";
virtual void sleep()
{ cout << "Zzzzz"; } we also know all
}; Nerds can eat
) and sleep!
class Nerd: public Person {
public:
virtual void study()
{ cout << "Learn, learn, learn"; }
¥
void bePersoney(Person &p
p.eat();
p.sleep(); and knpw'it will
} suppoit the required
operations!
int main() { (/U
Nerd nancy; This allows us/te V\/
bePer'soney(nancy _ p&ss a Nerd...
}

Each subtype has its own unique operations but

also inherits all operations from its supertype.
M ~— N

So supertypes/subtypes definé motonly a type relationship
s . .

These operational relationshi
support capabilitie __,_b\xwlymorpmsm

to a function that
accepts Persons...

Mobile User

Value Types and Reference Types

Types come in two flavors:

 Value Types

A reference type can only be used to define)
p0|nters/obJect references/references

(but instantiate obJects/vaIues)

A value type is one that can be used to
instantiate objects/values

(and deflne pomters/obJ refs/reﬁrences).

— e e— _,"]

An example of a value type

~_Amexample ofa referenceﬁmgia

class Dog {
public:

private:
string name_;

Jré

Dog(string n) { name =
void bark() { cout << "Woof\n";

would be a type associated with
a concrete class (one with all its
methods implemented).

n; }

We can only use the
type to define
pointers/object

references!

Why? Because we
can use the type to
instantiate objects.

Dog d("Kuma"),

K n o (and define pointers, etc.) (i
P

class Shape {
public:

—J

type associated with an abstract class

(missing some method implementations).

—— -
— _—

Shape(Color c) { colorL = C; }

virtual double area() = 9;
private:

Color color

—

Mobile User

Type Equivalence

Type equivalence is the criteria-by-which a programminglanguage
determines whethertwo values or variables are of equivalent types.

There are two approaches:

TypesSandT are
structurally identical!

// typescript: structural equiv.

Again, types S and

struct S {/ string a; int b; }; v sl type S = { a: string; b: number };
struct T { string a; int b; }; ____identicall ” type T = { a: string; b: number };
But they're not

o s/ \ . e . TN
int mal"(/ { ci;?:ir:jetrh::;r:e So under structural Tunction-mal '() {

5 sl, s2; equivalence, so this eqzivalgnce,.thleseare let s1, s2 : S;

. Idb : considered equivalent types . .
T tlJ tz-’ —E— and this would be allowed. let tl) t2 : T:
sl = s2; 4/ this works! sl = s2; // this works!

~s1 = t1; // this works too!

| b

sl = t1; // xype mismatch error!

Mobile User

Type Equivalence

Type equivalence is the criteria by which a programming language
determines whether two values or variables are of equivalent types.

There are two approaches:

Name Equivalence Structural Equivalence

Two values/variables are of equivalent types Two values/variables are of equivalent types
only if their type names are identical. if their structures are identical, regardless of
their type names.

Most statically typed lanquages (C++, Java, ...) use name equivalence, while most
dynamically typed languages (Python, JavaScript) leverage structural equivalence.

As we go through the various typing systems, look out for the two approaches!

Mobile User

Type Checking

Let's discuss how languages implement type checking!

And learn the pros and cons of each approach.

Mobile User

Strong

Weak

Type Checking Approaches

nile-time vs. Run-tim

Static typing

Prior to execution,
the type checker
determines the type
of every expression
and ensures all
operations are
compatible with the
types of their
operands

Dynamic

Dynamic typing

As the program
executes, the type
checker ensures
that each primitive
operation is invoked
with values of the
right types, and
raises an exception
otherwise

Mobile User

Strictne@

Type Checking Approaches

Compile-time vs. Run-time

Static Dynamic

Strong type checking

©)

c

_g The language's type system guarantees
that all operations are only invoked on
objects/values of appropriate types

- : [T

Weak type checking

The language's type system does NOT
guarantee that all operations are invoked
on-objects/values of appropriate types

Weak

Mobile User

Strictness

Strong

Weak

Type Checking Approaches

Compile-time vs. Run-time

Static

CE:‘F/(?O/

Static tyi(ﬁ//a

Prlor to execution
the type checker
determines the type
of every expre

operations are
compatible with the
types of their
operands

(NS
C,Ctt

Dynamic

Javascript, Perl,
PHP, Ruby,
Python,
Smalltalk

NONE that | can
find! ©

Mobile User

What is Static Typing?

With static typing, a type checker checks that all operations are consistent with the
types of the operands being operated on prior to the program's execution.

ough a has no exp ‘
: . . Is the same as the type o

be a numeric type since we're this returned value!

comparing against 0.

~3

//_—f:++ - exp11c1t types: a, b, d add() - - Haskell‘infer‘r‘ed nyfleric types
int add(int a, int b) { return a + b; } abs a = if a > @ then a else (-a)

It can also verify that the type of ' \ .
expression a+b is the same as the return pe checker also

sure this expression (a > 0) is makes sure the type of

this returned value...

type of the function. of the Boolean type as

\ required by the if-expressio
If the type checker can't assign distinct types te-giivariabies,
expressions and verify type compatibility, then it generates a compiler error.

But if the program type checks, it means the code is (largeiy) type-safe and few if
any checks need to be done at runtime.

nctionsand

(

Mobile User

A Precondition for Static Typing?

To support static typing, a language must have a fixed type
bound to each variable at its time of definition.

Once a variable's type is assigned, it can't be changed.

Consider C++ (statically typed) and Python (dynamically typed):

The type of —~— Since variable d has

: & // C++ -
variable d is fixed vl Foolbeel [5) 1 # Python noflxed type, it could

and can't change. Jouble’ d: de‘ic:g?(b anything.
if (bp d = 10

d = 10.0; else:
So the compiler can be d - “cate
sure that sqrt will
always be given a value rint(sqrt(d So there's no way to verify
cout << sqrt(d); P g
of the right type - G g that sqrt will be passed a

}

before the program

even runs!

Mobile User

Type Inference with Static Typing
Must types be explicitly annotated for static typing?

No! Types can often be inferred!

Consider the following program - if we omitted the parameter types, could a
compiler infer the types of x and y?

VOQd foo(4
X + 10

y) { . .
| cout < So type inference is
Of course, It's cout << y + " 1s a Str\lng! "o aCtua”y d Complex
never so simple! } ‘constraint satisfaction"

vo(ijd Eir‘(g {5/4% /)/‘(3 () ‘/\’L‘;Z/(pmgram.’“-i‘--_‘j problerm!
ouble d = 3.14;
M &)31@ foo(d, "barf"); 17:‘)@)

A UL {’}"’%ﬁ/{/w 7L0 e =

Languages like Haskell Go, and now even C++ offer some form of
type inference, yet are all statically typed!

Mobile User

Type Inference: A Few Examples

When using :=, Go infers the

he auto keyword can be used type of variables from the right-

to infer the variable's type frory . hand-side expression!
the right-hand-side expressi // GOLang 'type inference
// C++ t nference with auto func main() {
int) { msg := "I like languages"”,;
auto x = 3-141—59; item will be " :=.5 . .
vector<int> V; inferred to be int. for 1 := n; 1 > 0; 1-- {
fmt.Println(msg);
for (auto item: v) { }
cout << item << endl; :
} Wow — that simplifies things! It'd otherwise be: // Java type inference

std::vector<int>::iterator it = v.begin(); pUbllc ClaSS MyC]'aSS {

aufo it = v.begin(); publ}ctstaiéc vo;g main(String
. . 1in X= = : If you use the var keyword, Java
Whlle(lt = v.end ()) { > Y) also infers the type of variables!

cout << *it << endl; - "
el var s = "abc";

} f@/\“J) var sum = X + y;

} }w\

Mobile User

In Static Typing, IsThere Ever a Need to Check Types at Runtime?

error: invalid
downcast from
Doctor to Student

o]

If not, the runtime

type checker throws
an exception.

Yes! Even in statically-typed languages,
sometype checking must be done at runtime!

For example, when we down-cast!

class Person { . }, At the instant this
’ downcast happens, C++
class Student : pUbllC Person { oo 5 knows it's operating on
. a Person... but it doesn't

class Doctor : public Person { ... };

know what type of
—>void partay(Person &p) { person.
// assumes only students go /to parties

— Student &s = dynamic_cast<Student &> (p);
s.getDrunkAtParty();

} So C++ checks in real-tinfie

whether the object passéd infis
int main () { compatible with the d ast
" . (is this Person @ a
— Doctor d("Dr. Fauci"); o

—> partay(d);
}

Mobile User

class Mammal {

Ctaticr Tama Chacl/ina ic FOnservatwe

public:
\S;,trrtlzg| T,?;;eo avent technically
5 1 compiling!
lass Do J: P
[C)L?bsii)c ikt e type safety the
void | makeNi ly conservative.
void bite() {
i hich only asks
class Cat: publ to scratch...
public:
iy J xcking because

void scratch()

7

scratch() methods!

if (scratch) {
Cat* catPtr = dynamic_cast<Cat*>(&m);

void handiePq
m makeNoise

if ([_msAame(if (catPtr)
ra bite, () catPtr->scratchl():
else (\\rm.nan }

m scratch

Mobile User

Mobile User

Static Type Checking Pros and Cons
What are the pros of static type checking?

ADDENDUM: DYNAMIC TYPE CHECKING IN STATICALLY-TYPED LANGUAGES

What are the cons of static = e

- when disambiguating variants (think Haskell!)

. (depending on the implementation) potentially in runtime generics
Static typing
requires a type
checking phase
before execution,

Static type
checking is
conservative and

may error-out on
perfectly valid
code

which can slow
development

Mobile User

Mobile User

Mobile User

In Static Typing, Is There Ever a Need to Check Types at Runtime? J Pros an d Cons

Yes!-Even in staticaiiy-typed-languages,
sonie type checking must be done at runtime!

For example, when we down-cast!

static type checking?

. At the instant this
class Person { S }-: downcast happens, C++
error: invalid class Student : public Person { ... }; PPETITTON
downcast from class Doctor : public Person { ... }; hepERiL.. BULt doss
Doctor to Student e et Sy ol
void partay(Person &n) { PECOIT
// assumes only students\go to parties
—sStudent &s # dynamic_castkStudent &>(p);] SSCIAJ, AP949
s.getDrunkntPartyv(); }
} So C++ checks in real-time Ol apoD LUO:].SﬂD
whether the object passed in is
e int main() { com(pjtti:ilsec\’/wththedowncast alIJ/V\ Ol paau ON
type checker throws = Doctor d("Dr. Fauci"); N
an exception —’par'tay(d);
}

9p0d pijen Ajpdaiad
U0 1n0-JoJJd Aew

pUB SAIIBAIDSUOD S|
buppayd adAy onneis

Mobile User

Mobile User

Strictness

5trong

Weak

Type Checking Approaches

Compile-time vs. Run-time

Static

Dynamic

C#, Go, Haskell,
Java, Scala

Dynamic typing

As the program

I/

checker enasures
that each primitjve

Assembly
| lLanguage, C,

C++

| operatiomisirivoked
ith values-ofthe
ight types, and
raisgs an exception
otherwise

Mobile User

Dynamic Typing

In a dynamically-typed language, the safety of operations on variables/values
is checked as the program runs rather than at compile time.

If the code attempts anillegal operation on a value, an

def add(x,y):
print(x + y)

def foo():
a = 10
b = "cooties™

add(a,b)

exception is generated or the program crashes.

AttributeError. 'Lion' object has nc
attribute 'quack’

TypeError unsupported operand
type(s) for +: 'int' and 'str'

A

def do_something(x):
x.quack()

def main():
a = Lion("Leo")
do_something(a)

Mobile User

Dynamic Typing: Origin Story

Dynamic type checking was pioneered in the LISP [anguage backin 1958.

For flexibility, John McCarthy designed LISP so that vag

Why? T pes depe pon
weren't required to have a fixed type, e.qg. run-time congdi dfraren't
predictable at compile time!

(setq x 1) -
(1f (== some_condition True)
(setq y 6]

(setq vy "hi"))

But he had a problem - the static type checking
approach only works when variables have fixed types.

There's no way ajcompigefican
(add 2 y) determine if botf%ﬁ?rgaﬁs are
_ _ _ compatible!
So he needed a different kind of type checking.

Mobile User

Dynamic Typing: Types Associated with Values!

As with LISP, in today's dynamically-typed languages, we typically
don't assign fixed types to variables.

Because of this, we say that in dynamically typed languages:
"types are associated with values and not variables"

NOT variables!

Moral: Types are
associated with values.

For example, . .
Python variables def main () *
173

don't have fixed vanr
"CS131"

types! var
var = Dog("Koda", 5)

"CS131"

A variable can refer to
values of different types
over time!

How is Dynamic Type Checking Performed?

If variables don't have types, how can a dynamically-
¥ Y typedlanguage perform type checking at runtime?

How is Dynamic Type Checking Performed?

If variablesdon't have types, how can a dynamically-
typed language perform type checking at runtime?

Answer: The compiler/interpreter stores type information (called a type tag) along
with every value/object!

This type information is used to check all operations!

When an operation occurs, the
interpreter can check the type tag(s)

to ensure the values are compatible.

TypeError unsupported operand
type(s) for +: 'int' and 'str’ def add(x,y)z

-->pr‘int(x + y) Thisis atypetag it's

secretly stored along with

the value.

def foo():
a = 10
b = "nerd"
add(a,b)

Mobile User

Dynamic Typing: A Few Examples

Here's a function that prints out value v a total of n times, with strings in quotes:

#1: This is called type
introspection. It can be

#3: referred to by

a variable! used by a function to...
-- Lua language # Ruby Language # Julia language
function print. n (v, n) def print n (value, n) function print. n (v, n:: Int
for i =1, n do n.times do for 1 In 1:n
if [type(v) == "string"|then if value.is a?(String) if isa (v, String)
print('"" .. v .. '""") puts "\"#{value}\"" printin - ("\"$V\ ™)
else else else
print(value) puts value printin (V)
end end end
end end end
end end end
print_n("Hello", 3) print _n("Hello", 3) print. n ("Hello" , 3)
print n(42, 2) PRI int_n(42, 2) print. n (42, 2)
type of a value...

#4:This is called a type annotation.

It tells the program that only ints can be passed
to the second parameter. But nothing prevents
you from changing n's value later, e.g.: n="ha!"

class PersonInDuckSuit:

def quack(self):
print('Hi! Uh... I mean quack."')

class Duck:

def quack(self):
print('Quack quack quack!")

class Vehicle:

def drive(self):
print('Vrooooom!")

def quack please(x):
X.quack()

p = PersonInDuckSuit()
d = Duck()

v = Vehicle()
quack_please(p)
quack_please(d)
quack_please(v)

Let's Quack!

Consider the following three classes
and the code below which uses them.

= What does this
¥ Y program print?

class PersonInDuckSuit:

50 6 AL
def quack(self):"“__‘
print('Hi! Uh...

A

I mean quack."')

class Duck:

def quack(self):
print('Quack quack quack!")

class Vehicle:

def drive(self):
print('Vrooooon!")

#1: Since \Lariablex
could re\fe})to
virtualy any tyge o

def quack please(x):
X.quack()

p = PersonInDuckSuit(
d = Duck()

v = Vehicle()
quack_please(p)
quack_please(d)
quack_please(v)

nd If it does, ik £

e Neat: As loiigasan

Let's Quack!

Consider the following three classes
and the code below which uses them.

What does this
program print?

C
Error: 'Vehicle' ,
|ob1ect as no attribute 'quack'

+ © -
b
CT

m

u
e
L
h

And riotice, our classes arc totally

unrelated (i.e., no inheritance)!

obiect has a guack method,
the quack_please function just works with it!

Mobile User

ruby duck typing

class Duck

def quack
puts "Quack, quack"
end
end
class Dog
def quack
puts "Woof... I mean quack!"
end
end

animals = [Duck.new,Dog.new]
animals.each do |animal]
animal.quack()

end

// JavaScript duck typing
var cyrile_the_duck = {
swim: function ()
{ console.log("Paddle paddle!"); },
color: "brown"

}s

var michael phelps = {
swim: function ()
{ console.log("Back stroke!"); },
outfit: "Speedos"”

};

function process(who) {
who.swim();

}

process(cyrile_the_duck);
process(michael_phelps);

// Paddle paddle!
// Back stroke!

Duck Typing in Other Languages

Ruby, which is dynamically typed,
also offers duck typing. Let's see!

And here's an example from

JavaScript!

/Academic Robot Says:

"I'd argue that Duck
Typing is a form of
structural typing!

N Prove me wrong!"

\ Duck Typing: Cool Uses from Python

Python duck typing for iteration
class Cubes:
def __ init _ (self, lower, upper):
self.upper = upper Qi A= Nnimaratiian

<

def
:
def
if

for i
prir

Pytl
class
def

n v
© 2

def
rett

d=D
print

Mobile User

Mobile User

Dynamic Type Checking Pros and Cons

,)\" What are the pros of dynamic type checking?

Dynamic Type Checking Pros and Cons

What are the pros of dynamic type checking?

. .
i What are the cons of dynamic type checking?

Mobile User

A Hybrid Type Checking Approach: Gradual Typing

Static typing

Prior to execution,
the type checker
determines the type
of every expression
and ensures all
operations are
compatible with the
types of their
operands

yOme variables ma
be given explicit
types, others may
be left untyped.

occurs partly before
execution and partly
during runtime.

Dynamic typing

As the program
executes, the type
checker ensures
that each primitive
operation is invoked
ith values of the
ght types, and
jaises an exception
otherwise

We've just learned the differences
between static and dynamic typing.

There's actually a less well-known
hybrid approach also worth briefly
discussing: gradual typing

Languages like PHP and TypeScript
use it —so it's worth a quick discussion!

Mobile User

x has no type

Gradual Typing

x has a type

def square(x):

return x * x

result = square("foo") result = square("foo")

def square(x :
return x * x

int): With gradualtyping, you can choose whether

to specify a type for variables/parameters.

We pass an
untyped variable y

def square(x : int):
return x * X

def what _happens(y):
print(square(y))

If a variable is untyped, then type errors
for that variable are detected at runtime!

to a typed

parameter But if you do specify a type, then some type
errors can be detected at compile time!

OK, but what happens if we pass an
untyped variable to a typed variable?

X— Challenge: Will a gradually typed
F VW languageallow this? Why or why not?

Mobile User

Gradual Typing

x has no type x has a type
def square(x): def square(x : int):
return x * X return x * x
result = square("foo") result = square("foo")

to a typed

def square(x : int):

parameter
return x * x

def what _happens(y):

We pass an print(square(y))

untyped variable y

Answer:You may pass an untyped variable or
expression to a typed variable and it'll compile fine!

Since you could pass an invalid type, the program
will check for errors at runtime!

With gradual typing, you can choose whether
to specify a type for variables/parameters.

If a variable is untyped, then type errors
for that variable are detected at runtime!

But if you do specify a type, then some type
errors can be detected at compile time!

OK, but what happens if we pass an
untyped variable to a typed variable?

X— Challenge: Will a gradually typed
B VW languageallow this? Why or why not?

Mobile User

k y Classity That Language: Type Checking
Ok, let's test our understanding of static, dynamic and gradual typing!

fun greet(name: String) { The following program generates
print("Hello, $name!")

a single compilation error.

s this language statically,
dynamically, or gradually typed?

Answer:

A variable can't be assigned to a value of a new type. Son's type is fixed as a
String - this is Static Typing! That means that n has a fixed type — thus, this
language must use type inference! This is Kotlin!

Mobile User

Mobile User

Static

Dynamic

Strong

Javascript, Perl,

C#, Go, Haskell, PHP, Ruby,
Java, Scala Python,
Smalltalk
V)
n
<))
-
=
O
-
=
wn

Type Checking Approaches

Compile-time vs. Run-time
Static

Dynamic

Strong type checking

guage's type system guarantees
a8l that all operations are only invoked on
objects/values of appropriate types

Assembly
Language, C,

C++

Weak

Mobile User

Mobile User

What is a Strongly-typed Language?

A strongly-typed language ensures that we will NEVER have undefined behavior
at run time due to type-related issies.

In a strongly-typed language, there is no possibility of an unchecked runtime type error,

These are the minimum requirements to be strongly typed:

The Language is Memory Safe

The Language is Type-safe

A memory-safe language prevents

The language is type-safe, meaning that it : .
guag yP ! 9 inappropriate memory accesses (e.g., out-

will prevent an operation on a variable X if

X's type doesn't support that operation o oqua
int a; int arrl[5]. *ptr;
Dog d; |cout << arr[10]; // Prevented!
a=5%*4d; // Prevented! | cout << *ptr; // Prevented!
—— e —————————

These can be enforced statically or dynamically.

Mobile User

Things We Expect in a Strongly Typed Language

Here are some of the techniques that languages use to implement strong typing:

Before an expression is evaluated, the compiler/interpreter validates that all of
the operands used in the expression have compatible types.

|—y = Dog("Koda") —:

x=5+y -fI}

All conversions/casts betwecii difierent types are checked and if the types are
Incompatible, then an exception wiil be generated.

y = Dog("Koda")
¥ = (int)y

Pointers are either set to null or assigned to point at a valid object at creation.

Accesses to arrays are bounds checked; pointer arithmetic is bounds-checked.

The language ensures objects can't be used after they are destroyed.

[2og *x
print(x) // NULL!

| int xX[5]

| print(x[100]) m‘_

delete d;

d->bark(); m

General principle: Prevent operations on incompatible types or invalid memiory.

Mobile User

Memory Safety and Strong Typing?

X’ Challenge: Why must a language be memory-safe
E Y to be considered strongly-typed?

Here's a hint.

// C++
int arr[3] = {10,20,30};
float salary = 120000.50;

cout << arr[3];

Mobile User

Memory Safety and Strong Typing?

X’ Challenge: Why must a language be memory-safe

E Y to be considered strongly-typed?
Here's a hint. RAM/The Stack
g /] C+ arr
int arr[3] = {10,20,30}; [6]___ 10
float salary = 120000.50; [1] 20
[2] 30
cout << ar\r‘[B . This accesses the Salary)OI
salary variable as if

‘ nerean nteger!
Answer: If a language is not memory safe, you might access a value (like salary)

using the wrong type (int instead of float)!

. // Answer: Accessing a dangling pointer!
Here's another float *ptr = new float[100];

example! delete [] ptr;
cout << ptr|9]; // is that still a float?!

Mobile User

Casts

Strongly Typed Languages: Checked Gats

A checked cast is a type-cast that results in an exception/error if the cast is illegal!

// Strongly-typed Java has "checked" casts
public void petAnimal(Animal a) {
a.pet(); // Pet the animal

java.lang.ClassCastException: class
Cat cannot be cast to class Dog

Dog d = (Dog)a;
d.wagTail();

¥

#1: Strongly-typed Java
ensures we never

succeed with an
incomptible cast!

#3: At this point,
anything could

happen!

public void takeCareOfCats() {
Cat ¢ = new Cat("Meowmer");
petAnimal(c);

¥

// Unlike C++'s "unchecked” casts
void petAnimal(Animal *a) {
a->pet(); // Pet the animal

Dog* d = (Dog *)a;

d->wagTail(); _
#2: This code runs eve
} though were dealing
\ with a Cat, not a Dog

void takeCareOfCats() {
Cat c("Meowmer");
petAnimal(&c);

¥

Mobile User

Why Should We Prefer Strongly Typed Languages?

Why Should We Prefer Strongly Typed Languages?

{YLC ‘

So Why Do People Still Use Weakly Typed Languages?

Mobile User

Mobile User

/1o
&

';r

N

The Definition of Strong Typing is Strongly Disputed ©
Many academics argue for a broader definition of strong typing, e.g.:

All conversions between different types must be explicit
The language has to have explicit type annotations for each variaiie
The type of each variable can be determined at compilation time

etc...

And some strongly-typed languages even have these features.

But while these items may make a language's type system stricter, they
ultimately don't impact the language's type safety or its memory safety:.

So we won't use them for our definition.

Mobile User

Strictness

Type Checking Approaches

Compile-time vs. Run-time

Static Dynamic

Javascript, Perl,

(@)

S | C#, Go, Haskell, PHP, Ruby,

& Java, Scala Python,
Smalltalk

Weak type checking

The language's type system does NOT
guarantee that all operations are invoked
on objects/values of appropriate types

Weak

Mobile User

What is a Weakly Typed Language?

Here are some attributes associated with weakly-typed languages:

anguar preven Programs may access memory outside of
operations on data types that don't support array bounds or via dangling pointers

those operations
' e A%
Lion leo; int arr[3]; int *ptr;
leo.quack(); // ??? cout << arr[9]; § cout << *ptr;

Mobile User

Weak Typing and Undefined Behavior

Nt

In a strongly typed lanquage,we kinew that all operations on variables will either succeed orcm
generate an explicit type exception at runtime (in dynamically-typeaianguages). }

But in weakly-typed languages, we can have undefined behavior at runtime! /d
——

// C++ int > Nerd example w/undefined behavior!
class Nerd {

Then tries to call the
get_iq() method... ¢ lerd *n = reinterpret_cast<Nerd *>(&a);
it crash P . - ,
e cout << n->get iq(); // ?? What happens?!?!?

publici——_

Nerd(string name, int IQ) { ...}
int get iq() { return iq_; }

};...

This reinterprets our \
int main() { integer as if it were a
3 o, Nerd object!
int a = 18: - STEONE]

¥

7

A
o7

ozf/ f
ol

Sg((/an% W

Mobile User

,X‘ Classify That Language: Type Checking

I . -y
Defines a function called ComputeSum We've run this code a million

In this language, @ is an array that holds times, and each time it prints:
all arguments pg '

Sum of inputs: 1@@

sub ComputeSum { s
$sum = "

Bul =D s this language | |YC/M}\
foreach $item (@_) { # loop thru args or weakl : d7W
$sum += $item; \} \ / HYpe

¥

print("Sum of inputs: $sum\n") /-
}

Function Call Answer:
" n " " It thatthe | i rting
ComputeSum(10, "90", "cat"); WEEEESS.Q.E.gtfeitl%“iff;ﬁ?::.” et
weak typing... Byt-we traveTio Unee
This is Perl!

ty, and it looks like a string

——

Mobile User

Mobile User

Mobile User

')\"‘ Classify That Language: Type Checking

fun proze-;»SAPgBasedOnTYPe(X: Any) { Consider the following program which
when (x) A

is Int -> print(x)

generates a runtime error:

is String -> print(x.length) <Tan aEéi;&;;;;;:>
is IntArray -> print(x.sum()) W

else -> print((x as Dog).bark()) or weakly typed?
) } ‘® "Run-time: cfass Person) From this code, is it possible to
Py cannot be cast to class Dog determine if this language is

fun main() { statically or dynamically typed?

var x = Person("Carey", "Nachenflopper");

processArgBasedOnType(x)
}

Mobile User

X Classity That Language: Type Checkin
M

fun processArgBedOnType(x: Any) {
when (x)/{
is Int -> print(x) The language is

preventing invalid
is String -> print(x.length) casting (at runtime): :
is IntArray -> print(x.sum()) renar e Is this languag
else -> print((x as Dog).bark()) or weakly typeer

g (Y Run-time: class Person From this code, is it possible to
} W@ cannot be cast to class Dog L

22 4] determine if this language is

fun main() A | or dynamically typed?
var x = Person("Carey", "Nachenflopper");
processArgBasedOnType(x) —

#2: Every other type is
} compatible with it — so we
can pass in a Person, an

W Int, a Dog, etc,
\S’R M \/\/\\/ Answer:

#1: In this language, the L\/ %\ 6)za/@
"Any" type isa supel’type W f%
of all other types. l/\g\f“f
" j o

L/

Consider the following program which
ggnerates a runtime error:

Yep! We ca it's strongly typed and statically typed! We know it's strongly typed

ecause it preventyin invalid cast at runtime. The clue for static typing is here:

\/{)/.\ (x as Dog).bark(). This cast would not be needed in a dynamically-typed language!
)

Mobile User

Mobile User

Static vs Dynamic, Strong vs W

The trend —in industry — is toward more’strongly-typed languages with static type checking.

Facebook has developed Hack, a strongly and statically
“p h aCk typed version of PHP (for backend web apps)

(\

Facebook has developed Flow, a static type
checker for JavaScript

e —

Microsoft has developed TypeScript, a strongly and
gradually typed version of JavaScript.

TypeScript

—
In fact, just about the only wegakly typed languages left are C and C++.

Mobile User

e Of Th

Languag 9
3

History

Lua was created in 1993 by three members of the

Computer Graphics Technology Group at the Pontifical
Catholic University of Rio de Janeiro.

int call fact() {

Overview

Lua is an interpreted language that comes as a
library-that-can be integrated into other
appiications to let you add scripting to them.

Unique Aspects

You can give your users the ability to customize your

app by writing their own Lua scripts — e.g. in World of
Warcrait, to automate in-game actions for the user.

-- factorial.lua source file
function factorial(n)

end

local result =1

while n > 1 do
result = result * n
n n -1

end

return result

Here we initialize the
Lua interpreter and

pe~ oo deB o A

I lmomes annm nlle (1 ¢

// C++ function calls Lua
= lual newstate();

¥

lua State* L
lual dofile(L,

lua getglobal(L,

Llua_pusniuiivei L,
lua pcall(L,
int fact

H:‘;I-;
5); // compute 5!
1, 1, 8);
lua_tonumber(L,

=13

eout << "yl 1s:™ < fack;

Lua is used across diverse systems such

as embedded platforms, antivirus
engines, databases (e.g., Redis), etc.

Mobile User

Mobile User

So in language or

altern

More formally, given two typg Ay that Tsub is a

every element belonging to the IS also a member
of the s

All operations (eg +, -, *, /) tha
also work prog :

i.e., If | have code designed t O s Tsuper, it must
also work if | pass in a value of type Tsub.

By the end of this section, you should be able to:

Take a new language and figure out the rules it usem
different data types.—

Understand the implications of its conversion approach so you can properly
convert between differen s in that language.
et 1dng

A

type Tsuper must

Mobile User
So in language theory, we say that float is a subtype of double, or alternatively that double is a supertype of float.

More formally, given two types Tsub and Tsuper, we say that Tsub is a subtype of Tsuper if and only if

every element belonging to the set of values of type Tsub is also a member of the set of values of Tsuper.
All operations (eg +, -, *, /) that you can use on a value of type Tsuper must also work properly on a value of type Tsub.
i.e., If I have code designed to operate on a value of type Tsuper, it must also work if I pass in a value of type Tsub.

Mobile User

Type Conversions and Type Casts

To clear up the discussion from class about the type relations of int with either float

or double: int i ce doubles
have 4 u x f

Type conversion and type casting are used when we want to perform an
operation on a value of type A, but the operation requires a value of type B, e.q.

~—

N Pl

we want to pass an int value to a function that accepts a float value
I

we want to add a long value to a double value in an expression < CJWL-<]}

we want to pass a Student object to a function that accepts a Person object

(assuming Student is derived from Person) —Cagt

-

Mobile User
To clear up the discussion from class about the type relations of int with either float or double: int is NOT a subtype of float but int IS a subtype of double since doubles have enough precision to represent all values that int can hold.

Mobile User

Two Options: Type Conversions and Type Casts

Type Conversion

Type Casting

A conversion takes a value of type A and A cast takes a value of type A and views it as if it
generates a whole new value (occupying new were value of type B — no conversion takes place!
storage, with a different bit encoding) of type B. No new value is created!

Type conversions are typicaiiy used to convert

T . . .
between primitives (e.g. float = int). I'ype casts are typically used with objects.

—

// COﬂVQPSlon examp e This cast lets us refer to our original

‘g Student object, but interpret it as if p Person Parts
it were just a Person. ' | "
gEInlg "Mary" EElele 18

int main()
Student mar

int main() { |
float pi = 3.141; !3 i
cout << (ipt)pi; // 3

Theprogram performs-a
conversion, and generates a

Person & = (Person&)mary;
cout << "Hi " <« Evname()
P CasT

temporary new value of a
different type in the process.

distinct storage and has a
different bit representation than

The'converted value occupies)
the original value.

Mobile User

Two Options: Type Conversions and Type Casts »
_/ S

Type Conversion Type Casting

A conversion takes a value of type A and
generates a whole new value (occupying new

A cast takes a value of type A and views it as if it
were value of type B — no conversion takes place!
No new value is created!

storage, with a different bit encoding) of type B.

Type conversions are typically used to convert

between primitives (e.g. float = int). Type casts are typically used with objects.

// Conversion example // Anothe

int main () { This refers to our original integer, but
I 3 3 “interprets" its bits as if they
float pi = 3 141; P! int malni) { represented an unsigned int. ’
N int val = ;
cout << (int)pi; // 3 Y

}

< (unsigned int)val;
// prints 4294967254

cout

Mobile User

Casts and Conversions: Three Categories

.

cout €< 1 + d; // prints B.14 | use pottyin);

|den|ng type converted to more F,‘IFE'L'ISE' tyPe iasva pronotior) |, TyPE cast to SUper type jakaupcasn
8.2 see above Clw \(/1 O\/ W?‘"’U e.g. see above

Hurruwing pe converted to less precise type type cast to sSubtype ks downcsst
e.g. double to int e.g. Person to Nerd (NOTE: these can fail)
protect type safety! leading to errors for protect type safety! leading to errors for incompatible
incompatible types types
Unchecked donotprotect type safety! leading to do not praotect type safety! leading to undefined

undefined behaviour behaviour

Mobile User

Mobile User

Conversions/Casts: Explicit vs. Implicit ek

\

. %-)
versions and casts can be explicit or mphuB f\/j%

FEXTEENN An explicit conversionfexplicit cast

PARENTAL AnnﬂphutawwemKWIak cion)

\ ut explicit syntax.

———

// Explicit conversion
void foo(int i) { ... }

int main() {

-Float ° ; Here we use explicit syntax to
OQ (1n . indicate that we want to

convert our float value to an int.

}

// Implicit conversion

ADVISORY or pI|C|t castis one which hap 7
void foo(float f) { ... } @Z—

1nt ma1n
3 5)43 ‘ (HereweimpIicitchonvert

aka coerce) the type of our
integer into a type of float:

// Explicit cast

void feed young(Animal *a) {
if (a->has_fur()) {
((Mammal *)a)->produce milk();

} J “/”___—/’57&9u~v»é%*«69’/

// Implicit cast
void use potty(Person *p) { p->poop(); }

int main() { Most implicit casts are

* _ , "upcasts" - from a
Ne n _= subciass toasuperclass.
use pOt y(n) 5 Here we implicitly upcast
} - aNerd object to aPersep:

Mobile User

o
A
C/L\\Q w look at explicit conversions in different languages.

Ironically, while this ereatesanew

Explicit Type Conversions

float fpi =
int ipi =
int ipi2 =

// Explicit C++ conversions

3.14;

(int)fpi;
static cast<int>(fpi); // new way

value, and is tecnnically a

"conversion", G4+ calls it a "cast".

// old way

Explicit on conversions

fpi = 3.14 T

ipi = int(fpi)

as an unsigned 16-bit int is

(3", & as u1s);

-- Explicit JavaScript conversion

fpi = 3
ipi =/parselInt(fpi) /- converts to int

“\—// _/

Mobile User

ExplicitType Casts sl 4, b L
Let's look at explicit casts in different languages. W

// Explicit C++ cast

class Person { ... };

class Student: public Person { ... }

void make_em_stu p) 1
if (s != nulipepy=—

Student *s =/dynamic_cast<Student*>(p);

s->study();

// Explicit Java cast
—
class Person { ... }
class Student extends Person { ... }

void make em_study(Person p) {
// next line throws exception if p doesn't
// refer to_a Student object

}

}...

// Explicit Kotlin cast

open class Person(name: String) { ... }
class Student(name: String, gpa: Double):
Person(name) { ... }

fun make _em_study(p -~

val s:Student? p as Student?

if (s != null)
s.study()

Mobile User

Why Do We Have Explicit Conversions and Casts?

en you use an explicit conversion or cast, you're telling the compiler to change
what would be a compile time errorin

S~
class Person { ... } ‘(549 i [M/q\
class Student extends Person { ... } c INW E7
class Professor extends Person { ... } \UUMCE%
class Example (/777

{

Q@Frjj7 public void do_your_thing(Professor q) { Ol Y — [éiﬂ/«)

g.give_a lecture(); might know that this

cede will always work... (/ﬂ_rj
public void process _persoa(Person p) { ;7\ {
if (p.get_name() ==-"Carey") // p's name is Carey, so p j

do_—yeur_thing(p); // must refer to a Prof! | %{)
- java.lang.ClassCastException: class

(U&L
(] H%f&;nEmﬂbbef&ﬂTUTtBFPﬁﬁ%§Eﬁ~m N | jAT
(RN >
#2: But a statically typed compil‘er L L

can't prove this, and so will k%‘\’_ 7\t {\) 6 \S\D /]fﬁ hf@
generate a compiler error for this s O\m /\f\/ D

implicit conversion.

Mobile User

Why Do We Have Explicit Conversions and Casts?

When you use an explicit conversion or cast, you're telling the compiler to change

what would be a compile time errorinto a runtime check.

class Student extends Person { ... } (LL//‘C/
class Professor extends Person { ... }50“4#

class Example

We won't have

lass P T “T°
class Person f{ } ;;u%¢l Cg;\\\\

{ Of course, in a strongly typed language, the
program will still perform a runtime check

undefined pUbllC void do_your‘_thing(Pr‘of ssor q) { before allowing the cast operation!

behavior here... q . give_a_lectur\e() ;

}

public void-process person(Per

ANA

javadan [355CastException: class

udent cannot be cast to class Professor/

kﬁ if (p.get_name() == "Carey")
do_your thing((Prof
}

public void boneheaded function() {
Student s = new Student("Carey"); We're telling the compiler:

process_person(s
So if some

} rﬁ— J I/& boneheaded

but trust me, | know what I'm doing

coder did this...

}

"I know this conversion/cast looks dangerous, {:{h{

Mobile User

Implicit Conversions: C@s and Pror%
¥ —

C++ Implicit Conversion Rules

If either operand is long double then
Convert the other to long double

Else if either operand is double then
Convert the other to double

Else if either operand is float then
Convert the other to float

Else if either operand is unsigned long int then
Convert the other to unsigned long int

Else if the operands are long int and unsigned int and
long int can represent unsigned int then
Convert the unsigned int to long int

/——1/\'\/1/\ |/—

So we say that i is "promoted"
from int to double, sirice double
can hold all int values (and more).

PRt

Most languages have a prioritized set of rules that
govern implicit conversions (aka coercions) that
are allowed to occur without warnings/errors.

For instance, here are the C/C++ rules for
coercion during binary operations:
w______,__—/

/‘nﬂﬂ’/"/\ '{"

5. S0 pewfl iy

int 1 =
double d

So C++ convertsito a
double before the addition
operation is performed.

In this expression, C++ picks the highest
priority conversion rule that applies...

In contrast, tiiis-isa
coercion from int to bool -
but not a type promotiori.

if (a) cout << "a is not O";

Mobile User

W

- '\, 3
(\/»w;)"\w\h\fk Conversions: Widening vs. Narrowing \ €
(A
- e U
T~
@ A widening conversion is one that converts a
narrowe e to awi e, e.g.:

// Widening conversion: short - int
void foo(int 1

int can represent integers

int main () { between -2bil to 2bil, which int mailin () { R ——
short s = 42 ; incudes all short values! float £ = 3. 14; conversion because float and
short can represent . int are unrelated types with
foo (S) 5 integers betwepen o foo (f different ranges of values!

} to 32767

}
Since a wider type can represent every value the Na@nversions are NOT value-preserving,
narrower type/can, widening conversions ar meaning the conver ' e
- e converted value is always the same. different than the original!
\ |] o
% ﬂ{/u% [\/pﬂ st 0

- {
contfsin (=t fmiﬁ A ,Z,j() k=) hor

Mobile User

% Casts: Widening vs. Narrowin
}w”’v\d‘ B o A 9\(@96 oo | g 777% Sbclayy

Casts can also be widening (an "upcast") or narrowi

-

aria
U
N\
M

<t
A widening cast, aka an "upcast”, casts a An i
subtype v its supertype, e.q.: one that casts a supertype variable a
dent = Perspn .,e(qﬂf&% one of its subtypes, e.g.:?e@\r\ - Proy
oo /\>V
/ ¢
¥ 7

class Person { ...

t §¥4{2’C class Person { ... }; \\‘__’Uﬁzzzgk

class Prof: public Person { .. ﬁi‘?;;q:\\

void do_thing(Person *p) {
if (p->get _name() =

Because they're
guaranteed to work,
upcasts may be

]\ implicit too!
mmyllJ IICSH)(M plicit too!

int main() {

(1}
Student S(Here we downcast a to a Prof
chat withi|(s)% variable we're (subtype)
— () Here we upcast a currently treating as a
} Student (subtype)... Person (supertype)...

Enabling us to use Downcasts may fail if the actual object is

the subtype's i i I
cpetific mathods! compatible with the downcasted type!
\

Mobile User

Conversions/Casts: Checked or Unchecked

Conversions and Casts can be checked or unchecked.

@ Ina strongly typed language, every In a weakly-ty e, some invalid
2o @
// Checke rsion (Java) /{;ggigi;EEQ)COHVePSiOH (C++)
C{;EE/nggizggvfﬁjt, } C anism { ... }

class Alien extends Organism { ... } class Alien: public Organism { ... }
class Dog extends Organism { . *// class Dog: public Organism { ... }
Oﬁ
633?\]A%- Ny ; void play time(Organisim™ o)~{
public VOigjﬁlay t1me(0cgansm 0 Dog* d = (Dog *)oj // No error generateg!
D Java lang. (I/assCastExceptl n:

//} —>d->play_fetch(); \ // Undefined behavior!

—>Dog d = (Dog)o; |
d. play_'FetC h () ; 2::2zglcl)egn cannot be cast to } M
}

T \M%’ CLAL@ﬂbWK Alien fgyzfgeéjzllen(QM;%pi;jiz/
Alien a = new /Alien(. play time(a);
play t1me(a),—c%64w (RAAQ ngﬁﬁk/ L%bkﬂ @W@

Mobile User

A

g’ 'y Classify That Language: Casting & Conversion

function print(q) { /* ... program to the left prints:

y = '5°
print(y) 2
y = '5" - 33 ~ E
print(y) 5 -)
> S0 > S5 8 Q/
int("S' + 3 - 3); - i
print(=) / Question #1: Does this Ianguage\
g 3 L/% & support coercion?
Z’
C@W\)\/\ / Question #2: Is this language statically

or dynamically typed?

@ . . .
6 Y \ Question #3: Assuming expressions are
o e o evaluated from left-to-right, what does
this added last line print?

Mobile User

Thanks to Matthew Wang for inspiring

X‘ Classify That Language: Casting

Qa#:Yes! The language coerces 3 into the
string '3' when we use the + operator:

this problem!
0 V C U

function print(q) { = .. . js7ssses The program to the left prints:

Q2: We first assign

y = '‘5' + 3; variable y to a string 53

here...

print(y) 2

o . Qz1: And... the language coerces '5'into a
y = 5 - 3) number 5when we use the - operator: 59

print(y) 5-3>5-3>2

Q2: and then assign y to a number here...

. 1 1 o
Pl nt (> + 3 3) J So this must be a dynamically typed language!

Question #1: Does this language
support coercion?

Finally, if we evaluate from left to right, this: Question #2: IS th|s Ianguage Statica”y
1. Concatenates '5' and '3' to get '53' or dynam|ca”y typed?

2. Subtracts 3 from 53, to get 50

Question #3: Assuming expressions are
1S 1S JavaScrint! evaluated from left-to-right, what does
this added last line print?

Mobile User

Type systems empower you to formalize a

problem's structure into{user-defin
T___—-_—__—\

Mobile User

Scoping

/—np
/j;Zh? Jéiﬂ/\/47 def a(input): # this shadows the global input!
é/?/ VAN print{input)

KR=17

prni<s

Take a new language and understanm scoping.

Understand the implications of its scoping approach for t

a = input() # this doesn't work anymore!!
alinput("hi"))

34
hia
a

TypeError Traceback (most recent call last)
<ipython-input-7-c18663edc125> in =cell line: 13=()

11 print(input)

12 a = input() # this doesn't work anymore!!
—-—=> 13 a{input("hi"})

<ipython-input-7-c18663edc125> in a(input)
10 def a(input): # this shadows the global input!
11 print(input)

-—> 12 a = input() # this doesn't work anymore!!
13 a(input("hi"))

TypeError: 'str' object is not callable

By the end of this section, you should be able to:

L——\

~of variables in your program.
T -

Mobile User

Mobile User

Scoping
What's the big picture?

A variable is "in-scope" in a region of a program if it

. — .
ge has scoping rul w
isibility of variables andfunctions within a program.
___—-—‘-"'-———-/

can bﬁ/?fﬁtly accessed by its name in that region.
. - {

VOl
int x;
cout <<

;7 // Just fine, x is in foo’s scope!

ar() {

cout << x; // ERROR! x isn’t in bar’s scope!

—_——————

Scoping rules tell us what variables are visible at
every place in the code, and what to do when-

there arew of the same name.

NS

Mobile User

Some Definitions...

= scope

Definition
TheScope of a variable is the
range of a program’s instructions

void foo() {
int x;
cout << Xx;

} -

"The scope of the x variable is
the function foo()."

%%)3 In -scope

Definition

We say that a variable is "in-scope"
] L] -/\ L]
if it can be accessed by its name in
a particular'part of a program.
/] -

he foo function because it is
defined at the top of the function.

_/

Mobile User

string dinner = "burgers";

void party(int drinks) {
cout << "Partay! weet";
if (drinks > 2) {
bool puke = true;
cout << "Puked " << dinner;

} #2-Andthatthis hrs
} variable is totally
different, and in-scope
only in study().

void study(int hrs) { ~— _—

int drinks = 2;
cout << "Study for " << hrs;
party(drinks+1);

} Y

#1: Note that this hrs
variable is in-scope only
in main().

int main()
int hrs = 10;
study(hrs-1);

¥

Es

puke
IS In
scope
here

hrs and

drinks

are in
scope here

hrs
IS in
scope
here

A Simple C++ Scoping Example

S

F—

AR
drinks 2
IS in
scope
here

the study()
function
IS In scope
here

=

F—

(loas|
Sy

the party()

function

IS In scope
here

S

dinner
IS in scope
here

Mobile User

string dinner = "burgers"; Q;
void party(int drinks) {
cout << "Partay! weet";
if (drinks > 2) {
bool puke = true;
cout << "Puked " << dinner;

¥

/

¥

void study(int hrs) {&
int drinks = 2;
cout << "Study for " << hrs;

G/

[

Scope changes as a program runs!

N i o I A S

Let's trace through this program and hignlight actively
in-scope variables in green and functions in blue!
ot ©

<‘L
< w4, The set of in-sc

ope variables and functions
o~ ataparticular pointinaprogram is called
—_———

(o~

party(drinks+1);

Another way to say that a

¥

variable is in scope is to say that
it-hasan "active binding" st
actively'bound to storage which

int main()
—/int hrs 10;

}\étudy(hrs-l);

holds a value of 10. "

scope, it can be referr
to by its name.

,|

Once'a variableisin

d its lexical environment.
y —
Sk Lexical Environment C/?CA'&}.?(
sk oo dinner|"burgers" 90—/16\4{
Svat , |y
N drinks ,2 ;///)M —/ D
T p@/%ru’é N7 ﬁ

The environment changes as variables

ed .
me,in oJV go out of sco
j

Mobile User

#2: However, when

we're running the
study() function,
hrsis not in scope!

One More Definition...

void study(int how_long)

— while (how long-- > ©)
P cout << "Study!\n";
%) Llfetlme (aka Extent cout << "Partay!\n":

¥

Definition
#1: The hrs variable has a

EaCh Varlable a|SO haS d Illlfetlme" int main() { ‘ lifetime that lasts from the start

(from its creation to destruction). int hrs = 10;
study(hrs);

cout << "I studied " << hrs <<
" hours!";

to the end of main()’s execution.

A variable’s lifetime may include
times When the Va riable IS IN #3:BUt it still exists, and when study()
— returns, it will be back in scope!

nd times when it is not

in scope (but still exists and can

def main():

R —— var = "I exist"
be accessed indirectly).
G like Pyth - i
¢§L§ " aloww you to explicitly del var # no longer exists!
C‘OH ﬁ//\e@ control a variable's lifetime! pr‘int(val") # error!

Mobile User

Lifetimes... of Values

#1-Thied variable and the value it : : . 1
Class Dingleberry: [t R Values alsp have lifetimes a.nd they're
RS often independent of variables!

Let's see!
#3: But when we continue

#2: At this point, d's
return d Iifetimeinds. Dingleberry running in main(), the value
‘ d referred to is still alive, but

def make dingle():
d = Dingleberry()

X = make_dingle() ObJeCt now referred to by variable x!

if x.is _clinging(): X

print("Wipey wipey") _ _ o _
—— So while a variable's lifetime is

limited to the execution of the

function where it's defined...

AW VU ver ’
S &A value may have a lifetime that
RY Y @ds ind@fi%

Mobile User

Lexical Scoping

Let’s start by discussing Lexical Scoping, which is by far the
dominant scoping approach.

File
%?3 Lexical (aka Static) Scoping Class
o T

Definition — Function
All programs are comprised of a series of Function
nested contexts: we have files_classes in { Code block}
those files, functions in those classes, blocks { {blk}{blk}}

in those functions, blocks within blocks, etc.

y all modern languages

With lexical scoping, we determine all variables _ _
Lexical Scoping!

that are in scope at a position X in our code by
looking at X’s COWN looking in Why? The scoping rules are intuitive

successively larger enclosing contexts around x. | for coders ope can be computed
\m\
yrambiguously at compile time!

Mobile User

Lexical Scoping (C++ Example)

string a_secret = "Nerds are sexy!";

class Nerd {
public:

void pick nose(int count) {
int j;
for (j=0 ; j<count ; ++3j)
cout << name << " digs in!\n";

¥

private:
string name;

}s

For instance, let's determine what variables
are in-scope on this line right here...

Well, within our current function block, we
ave j and count in scope.
And within our enclosing class context,
we see that the member variable name is

also in scope!
et s

Finally, when we expand to include our file
context, we see that the global variable

~secret is also in'scope!
So, into ' ' ing, on this line
jrzcount, name and a_secret are all inscope!

Mobile User

Lexical Scoping (Python Example)

host = 'cindy'

def party():

guest = 'chen’
def use hot tub():
drink = 'white claw’

print(host, 'and’,guest, 'are tubbin')
print('and drinking', drink)

use _hot tub()

In the local context, we discove@

Then in the enclosing context, we
discover OL@
Finally in the global xt, we
discover ouf host.

Python does scoping using the "LEGB" rule:

Local, Enclosing, Global, md’%%\
po T i€/
Local: f;ngl\\

First'look in the current code block, function
dy or lambda expression:

n (if you have a nested function) look irnthe
enclosing function that contains your function.

obal:
Then look at all of the top-level variablesand

BUITt=m:
Fibally you're left with built-in pythe
keywords, functions, etc.

Mobile User

What types of contexts do we consider for Lexical Scope?

Expressions Blocks Functions
A new variable is introduced as part || A new variable isintroduced within || A |local variable or parameter is
of an expression, and its scope is a block, and its scope’is limited to introduced within a function,
limited to that expression. that'block. and its scope is limited to that

function.

et 51nm

o 1C/\Ld’ (/OVW }--- if drinks > 2
sum x*¥x for x in e = B
range(l@M \\ P

while (i++ < n)

Vo € s
LA gl
CJYW\L4 HA~414/;V

&&ngyﬂ

Mobile User

What types of contexts do we consider for Lexical Scope?

/"_\

lasses/Structs

A class can have member variables,
whose scope is limited to that class.

class Dog {
public:
void wash() {..}

private:
int num_fleas;

}s

T—
(amespaces)

Some languages
namespaces that also provide
"cleaner" scoping.

Global

We can define global variables,
whose scope is available to all
functions in the program (or file).

namespace CONSTS {
const float PI=3.14;

}

float area(float r) {
return r*r*CONSTS.PI;

}

Global variable!
name = "Carey"

def who _am i():

print("I am ", name);

Mobile User

Dynamic Scoping o fne f00 £ L/ of o

rint x, y W\ {C\)\ﬂ’z

%%33 Dynamic Scoping func bar() { T
Definition y/”‘(int y| = 32; N M (/
Séo/% foo()} o ™M

In a language with dynamic scoping, when you -1} Sle>gl

reference a variable, the program tries to find it func bletch() {

in the current block and its enclosing blocks... in€ x): -1, y = 5;

f .\3(—_——

If the variable nd, the program then } oot/

searches th calllng function)for the variable. If it func madn() { X

can't be fon Ksits calling foW SIE: int x = 1000;

= , o

™\ S \@\{mhﬁbar‘(); T =>7 g Rj/ﬁ/

\ Dynamic Scoping has a few holdovers (Logo, /r%/\‘)}k bletCh() 7 9¢9 Wy
Emacs Lisp, Bash), but otherwise is DEAD! s \ﬁ 33 =g ol

f7§?(7([TnO

Mobile User

');"ClassifyThat Language: Scoping

(setg a 100) # sets a to 100 The following program

outputs a value of -42
prints the value of a

(defun print_value of_a () o
(print a)) What does this imply about the type

of scoping used by this language?

define local variable a,) then

call. print value of a
(letlz(a -42)3 CD’V‘@% &J/
(print_value of a)) %V AM/[/ W

Mobile User

/\' CIaSS|fyThat Language: Scoping
“-lllllhk (;Uﬁ%%fg%%%jZ-K%ADV” C/ '%Uﬂq}f“ /§9x<7

(setq a 100) # sets a to.i@d The following progranégf/{
outputs a value of - b2,

prints the value of a

def int_value_of ?/b
(fpﬂr{ni’r;?)‘va seot2 O What does this imply about th)

of scoping used by this Iang

define local variable a, then
call print value of a
(let ((a -42))

(print_value of a))

fels cmnt blale (- b callng AM[V//
o St e (D cally @m/wf@ﬁ o
Do L 14 Creofpe ﬁ@ﬁ

Mobile User

')'Q"Classify That Language: Lifetime

program main The following program outputs:
call foo()

call foo() a
call foo() a
end i;

10.00000000
20 .00000000
30.00000000

What does this imply about the
0 lifetime of variables in this language?

subroutine—fea()
ada =

real ::
a/= a + 10
write(*,*) "a =

What common problem-solving
end

technique (starts with an "r") can
we NOT use in this language?

ved on OA &
cal\ (M sgpntangwu eI

Mobile User

')';"Classify That Language: Lifetime

program main The following program outputs:
call foo()

call foo() a = 10.00000000
call foo() a = 20.00000000
end a = 30.00000000

subroutine foo() What does this imply about the

real :: a = lifetime of variables in this language?
= a + 10

write(*,*) "a =

What common problem-solving
end

technique (starts with an "r") can
we NOT use in this language?

Answer;
In this language variables have a lifetime that spans ACROSS distinct calls to the function (aka "static
vars")! Recursion can't be supported without the ability to have a distinct copy of the local variable in

each call. This is Fortran 77!
iLL ueayi04 sIsiy] “||ed yoea
W ul 3|qelieA |e20] ay3 Jo Adod 1ounsip e aaey o1 Alljiqe ay3 1noyum panoddns aq 3,ued uoisinday j(,sien
d13e1S,, BYR) UOIIdUNS Y3 03 S|[BD IDUNSIP SSOYDY sueds 1eyl awiiayl| e aaey sajqertea abenbue) siyi u)

loMsuy

Mobile User

Mobile User

Memory Safety

By the end of this section, you should be able to:

Take a new langua jerstand how itensures safe access to
oryto prevent bugs and hacking attaﬂkﬁ‘.

§e and understand how it reclaims the memory of "dead"

objects iS__’_Cbe program runs. \g&/Lw‘-{ M\/"’

Take a new la

Mobile User

Memory Safety
What's the big picture?

Memory-safe languages prevent memory
operations that could lead to undefined behaviors.

// Java does out-of-bounds checks on all array accesses
int[] array = new int[20];

int i = 400; |
System.out.println(array[i]); Java throws an exceptionl

N -
Memory-unsafe languages allow memory operations
that could lead to undefined behaviors.

. o
// C++ Uninitialized pointer\ use
int arr[3]; int *ptr;
cout << arr[9]; // 2?22?12 out << *ptr; // ???

S

< — ~————
An inordinate amount of bugs and hacking

vulnerabilities are due to memory unsafety!

Mobile User

Memory Unsafe Languages...

Allow out-of-bound array indexes and
unconstrained pointer arithmetic

pually oA

Allow casting values to i atible types

arr,
//)out-of-bound

—
/;nt/ﬁF?[le], *ptr

arr[-1] = 42;

¥

cout << *(ptr + 100);/// pointer arith'c (

/iﬁE/V;

Student *s = dynamic_cast<Student *>(

)5

s->study();

Allow use of uninitialized variables/pointers

- ——

Allow use of dangling pointers to dead objects

(programmer-corrh‘oﬂed-ob}e-dde\struction)

vl Totes 47 beth untns el de

i
cout << val; // could leak info!
*ptr = -10; // corrupts memory

/;;uﬁg;; *s new Student("Gerome");

delete s; // student is no longer valid

s->study(); // ???

Mobile User

Memory Safe Language@w(¢ S

ZV

Allo nd array indexes and Allow casting values to-incompatible types

unconstralned pointer ari

Threw exceptions for out-of-bound array indexes; Throw an exception or generate a compiler error for

invalid casts

Disallow pointer arithmetic

Allow use of uninitiatiz

Throw an exception or generate a compiler error if an Prohibit programmer-controlled object destruction
uninitialized variable/pointer is used; Ensure objects are only destroyed when *all*
Hide explicit pointers altogether (e.g., Python) references to them disappear (Garbage Collection) '

Mobile User

Memory Safety and Memory Leaks

Shouldn't a language be considered

unsafe if it can havef

Well, if our criteria for something to be "unsafe" is
leads to undefined behaviors, then memory leaks don't count!

e

. s ﬁ

Why? Even languages with automated memory management
(e.g., garbage collection) can sometimes run out of memory! 1/~ ol

When this happens, the program is predictably

terminated —there are no undefined behaviors-, |

So based on our criterion for memory safety, we will not

require & language to prevent@

Mobile User

Strategies for Memory Leaks and Dangling Pointers

Gaibage Collection Ownership Model

The language manages
all memory de-allocation
automatically

The compiler ensures
objects get destroyed
when their lifetime erds

Rust
C++ (Smart Pointers)

C#, Go, Java, JavaScript
Python, Haskell, ...

Mobile User

[FUN Garbage collection was pioneered _ "
in (TGP in the early 605 Garbage Collection /ﬁW\J@/%W s

Garbage Collection is the automatic reclamation of memory which was
allocated by a program, but which is no longerreferenced.

~—

In a language with e programmer does not explicitly
rol object destruction — the language does.

Eliminates Memory Eliminates Dangling
Leaks Pointers and Use of Dead
Objects

Eliminates Double-iree Eliminates Manua!
Bugs Memory Management

Ensures memory

. : Fliminates inadvertent Simplifies code b
allocated for objects is Prevents access to) P Y

attempts to free eliminating manual

freed once it's no longer objects after they have :
memory more than once deletion of memory

needed been de-allocated
~——

Mobile User

When Should Objects be Garbage Collected?

¥ CHALLENGE!What criteria should be used to
¥ Y decide when to garbage collect an object?

When Should Objects be Garbage Collected?

¥ CHALLENGE!What criteria should be used to
¥ Y decide when to garbage collect an object?

: collect an object when
there are no longer any references 0 that object. 0/)

mbervarlables noélobals)etc /CAJ /‘QW
public void do some work() { public void do some work() {
Nerd nerd = new Nerd("Jen"); Nerd nerd = new Nerd("Jen");

} // nerd goes out of scope
A e

we overwrite an obj re
nerd = new Nerd("Rick");

// or

nerd = null;

Mobile User

ML) S
Let's talk about three ofthe,?ﬂain garbage coIIectiomaches!

Garbage CoIIecitAi%\mproache’s s

oty

o - [gaud d R L4

Mark and Sweep Mark and Compact Reference Counting

Discover active objects by doing

a traversal from all global, local

and member variables that are
obj references.

Each object keeps a count of the
number of active object
references that point at it.

Discover all active objects; move
'em into a new block of memory.

Throw away everything in the old
block of memory (which holds
only dead objects).

Wherian object's count reaches

Free all objects that were not) : .
zero, its memory is reclaimed.

reached during discovery.

—
/Gﬁva, JavaScri , Hask® CPerI, Pythc%
- -

/
Bulk garbage collection occurs when free memory runs low — the Individual objects are garbage collected
program'’s execution is frozen temporarily while this happens! the i

B

“ >

S 72 A,

Mobile User

Mark and Sweep Garbage Collection

Mark and Sweep runs in two phases:

A Mark Phase A Sweep Phase

The algorithm identifies all obje hat are still The algorithm scans all heap memory from
referred to and thus considered to be in-use. start to finish, and frees all blocks not marked
- as being 'in-use.'

Mark and Sweep was invented by
John McCarthy (inventor of LISP) in 1960

Mobile User

Mark and Sweep: The Mark Phase

During the mark phase, our goal is to discover all active objects that are still being used.

We consider an object in-use (and its memory not reclaimable) if it meets one of two criteria:

It is one of a key set of root objects It is reachable from a root object
Ro jects incIud@e@ If an object can be trﬁn@reached via
all stack frames, and one or more pointers/references from a root
n the call stack guem object (e.g.,robot object points to battery)
// Java erefore should NO The Stack
public class Game { sy rObO.t:\a“e”
public void play(AudioPlayer audio) aUd'(F
Robot robot = new Robot("Quark"); The He
Alien alien = new Alien(); Audio || Robot object
o cinper ||
alien = null; T / Alien
} object iat;?crty_ object
static Hero hero = new Hero();
} Jgo

Mobile User

Mark and Sweep: The Mark Phase

During the first part of the mark phase, the garbage collector identifies all root objects
and adds their object references to a queue* for investigation.

During the second part, the garbage collector uses the
from the root objects and mark all reachab

Pseudocode for the Mark algorithm
def mark():

queue to breadth-first-search

Each object has a bit (hidden from the
programmer) which is set by the GC to
mark that it's still in-use.

When we're done, all

roots = get _all root_objs() /VVQ/44L_
candidates = new Al
. Queue() | s 0*‘
for each obj ref in roots: 7 e
candidates.enqueue(obj_ref) / “*35{7
while not candidates.empty():

c = candidates.dequeue()
for r in get obj refs _in object(c):

reachable objects have

been marked.
S—

if not is marked(r):
—_ () L/WV-,/&

mark_as_in_use(r)

candidates.enqueue(r) ¢Y7Vm9%33§iij)

All unmarked objects are
not in use and can be
disposed of!

—
x How does the GC find
¥ unmarked variables?

Mobile User

During the sweep

Mark and Sweep: The Sweep Phase

verse all memory blocks in the heap
-—

ach block holds a single object/value/array) and examine each object's in-use flag.

So to perform the
sweep phase, we can
simply follow the links

ARGl
from top-to-bottom.
| TOpTto-DOLLD

/W
How do we traverse memory blocks?

The Heap

size: 200 bytes
prev: nullptr
next: 1220

Well, all memory blocks in the heap are linked

togethertop-to-bottom in a linked list!

R Our first object was marked

1000

as in-use, so we can keep it

Pseudocode for the Sweep algorithm ndjust reset the in-use flag
def sweep():
p = pointer_to_first block_in_heap()
end = end_of_heap()
whiie p < end:

= 1020
Hero 5§
object

size: 1750 bytes 220
prev: 1000
next: 3010

Our second object was
not marked as in-use,
so we can free it.

240

if is_object in_blo _): ~—— _% Alien
rewm, #removethe mark, object lives 9& object

1

free this block/ohiact—

Adjacent free blocks can
then be coalesced into a

S|ze 50 bytes 940
rev 1220
ext: 3010

single large block!

Mobile User

Mark and Sweep: Memory Fragmentation

Mark and Sweep can result in-memory fragmentation.

unused

Fragmentation is when the heap becomes peppered with
small, unused memory blocks where previously-freed

objects used to be.
- ﬂ unused

unused

(

When this happens, it becomes slow (or impossible) s
to find free chunks of memory big enough to unused
accommodate object allocations:

So how might we deal with this? Let's see!
* Rather than using a queue or stack, the mark and sweep algorithm can use a
clever pointer manipulation trick. But logically you can think of this as a breadth-first
or depth-first traversal.

Mobile User
* Rather than using a queue or stack, the mark and sweep algorithm can use a clever pointer manipulation trick. But logically you can think of this as a breadth-first or depth-first traversal.

Mobile User

Mark and Compact — A Twist on Mark and Sweep

o
In Mark and Compact GC, we perform our normal mark phase.

T

N~ —
However, once we're done marking, we don't sweep away unmarked objects!

Instead, we c@act all marked/in—us@ to a new contiguous block of memory. ng
/ Then w%ad/just all @rs to the proper relocated-addresses.
& oria ~lgo

Finally, our original block of memory ISJUSt treated as if it's empty

CW\ /a/(%and can be reused as a whole without dea ' W J
&Qé(’ The Stack The Stack
We alternate f;l?;;;\ alien [r:f;g E\anen =]

contiguous blocks. Aien

compaction back and The Heap
forth between the two ‘A;/ﬁ a

L 5 4

Alp (PN s (s

Mobile User

Garbage Collection and (Un)Predictabil

Ity
Mhz
With GC approdches, it's impossible tg'predict when (and if) a given object will actually
be freedby the collector — collecti urs when there@

Iy

A Challenge: Why does it matter? /f/%/\/

Goot=d "7

Mobile User

Garbage Collection and (Un)Predictability

1 g Nrler net? sane] gL 15 Srenn
With GC approaches/it's impossible to predict when (and if) a given object will ac’gélly

be freed by the collector — collection only occurs when there's memory pressujg.

Academic Robot Says: . |
- ; /Y 'k‘ Challenge: Why does it matter? S’ZQQ/(

W@, [-based languages,
& the programmer really Mf 2) f7
— needs.to free-athe /
fesources (e.g. (_ //

%rssUrWa’G

—

ell, what if each object creates a
large temporary file on the hard drive~

manually and

Z nd Wty of RAM, sot
of ollector doesn't run and get rid of unreachable

%\14 You're going to run out oﬁ-drive space, long before you run out W
‘o Mgy =

Mobile User

A reference count
‘ is secretly stored

Reference Counting-based Garbage Collection

In reference counting GC, every object has a hhat tracks

how many references there are to it.

with each object
and array.

- After: x ="l love dogs."
X Guhsl ‘I love dogs." ref_cnt b
def foo(): B L
= "I love dogs."
& After:y = x
= X _# y.ref count += 1
Suusl "I love dogs." ref_cnt i)

The language secretly bumps up

X. r‘e'F_COUﬂt ==l thie count every time a new

None reference is created to the-object.
- After: x = None

The language secretly

locals gO OUt O-F Scope decrements the count every time

X
Y
None Rg=ipeas
= a reference to it goes away.
y. PE'F_COunt 1 x-/; Suurel "I love dogs." ref_cnt

x.ref_count -=1 ,

H H H X H < X
Il

Every time a new reference is created to an object, the

L
%Mf«—M (ﬁ v /(/(9“‘”7 language secretly increments the count.
K Sh\ “(/\OW b Every time a reference to an object disappears,

the language secretly decrements its :
@m)(MC)C)) % @ object's counﬁacheswje/c::w:@

Mobile User

Reference Counting-based Garbage Collection

When an object is destroyed (its reference count hits ZERO), all objects transitively
referenced by that object must also have their reference counts decreased!

/
Because is, Temoving a single reference can potentiaily a—
:) This object goes away...
lead to a cascade of objects being freed at once. SLOW!
Vehicle —— P~
: : .. ref_cn
Elra&s\Vehlcle: e engine 2 -
def init_ (self): brake SELCHl - ref_cnt

self.engine = Engine() wheel —{steenns

self.brake = () blinkers
S wheel = ing()

Blinkers

self.blinkers = Blinkers() ") £
g\)/ lMM When this
- reference count
'\K S’\] C/4 goes to zero... Forcing these objects
reference counts to zero,
o~ ()b and requiring them to be

GCed too!

Challenge: How might we address this
F VY tospeedthingsupinthe average case?

Mobile User

¢ Sarcastic Robot Says: I

Reference Counting-based Garbage Co

(ﬁ} DRBOBAORD
When an object is destroyed (its reference count hits ZERO), all obj{ 4 W"
referenced by that object must also have their reference counts. 88 ST /
Because of this, removing a single reference can potentially
lead to a cascade of objects being freed at once. SLOW!

Vehicle

Engine | ref_cntE

class Vehicle: engine
def init (self): Y brake GG ... ref cnt

self.engine = Engine() wheel ;

self.brake = Brake() . blinkers >teering

self.wheel = Steering() Blinkers

self.blinke

~

def game(): r/“.Q W
v S wERelel Answer: ! ~

: Instead of destroying an object
—>Vv = None

becomes zero, add it to afist of pending objects

and then reclaim memory regularly over time.
g____________ N

— —] - [-~ HUIIVY 341 9€ UUUD 3T 4JTIYV UT NUINUAITP JU PET4IU

doMmsuy

Mobile User

Mobile User

')Z"Garbage Collection: Pick the Winners

ﬂ/&\& We have many objects of diverse sizes with frequent allocations and deletions 7 &V\/

—what GC scheme(s) are best suited for my situation?
/\e/\[—wwx W CONT
| have lots of objects with cyclical references to each other. W

What GC scheme(s) should | avoid? _count- W\W
ﬁ He ject

| am running on a low-RAM device.
What GC scheme(s) are best suited for this?

| am writing a program for a real-time device.

¢ _~ What GC scheme(s) are best suited for this?
T 2 o7
(1ede peaids aq Aew 3ey3 pue s320|q 3|gesn sS3|) ISIOM 3 Sd¥ew os|e uolejuawbel :330N

- %ﬂé et~
‘buiyseayy aquay ‘(ano pue ul buibed) s1e. 3ney abed ybiy e saey pjnom am ‘wiayl Jo ||e 24031s 03 ybnous abue|1ou st VY Jno pue sabed

40 10| e sasn deay Jno ji mop ‘deayuno ui s320|q AJowsw ayi ||e ybnou JB/\EJl 031 aney |[Im daams-puesdie|y” I 129||0D abegJien sy 03 pes| pjnomiey] “[jny yanw A1aid si AV 18yl yans elep jo syunowe abae| buniols suibew

"3|dwiexa ue 3e 300 s} 1n dJew J ' ! ! | | ! !
M 8 ueddeuulq OIA S Jawil \ yAUM Bul { 1 aul
"3WI} JAAO0 DD JO PRO| 3Y3 1IN0 UIAS d|ay Ued SIPEeISED 1M [eap 03 934 03 5323(qo
Buipuad jo snanb e jo asn *s3193(qo Jo HH |eruswaLdUI Ul Bunynsal Ajjessusf”o,)Ae Asyh se pa [qo- I . 19Ul I I I
¢SIU1 104 pa1INs 159 dJe (S)aWayds DD I_YAN "9DIASp dwlil-|ead e toj weiboud e buium we | :p

A K

ale s3193[qQ 's1n320 JH 3|IYM J9IndW0d 3Y3 923344 3,USI0P H AUIS (|e3p! 10U [|13s Yybnoy3) 1s3q 3q pjnom buirunod 3dua14y

"S]UNOD 9IUDIRJ3J UlRIUIRW 03 1930 Yded Yyum paJols Alowsw ealxs sadinbal buiunod aduaiaas pue ‘uoidedwod 1o Alowaw 3y} Jjey aAI9sal 01 Spaau 10edwod pue el 153q 9q pjnom daams pue el
¢S1Y3 104 paNns 3534 aJe (S)aWdYds D I_YAN "DIIASP IAVY-MO]| B Uo buluuni we | :D

‘wesboud
e ul s9|qeLien Aue Aq 01 pa.iaya. J1abuo| ou aJe I USAS 0J9Z 2B AU [|IM JUNOD 3DUIIDJR J19Y3 1ey3 Buluesaw ‘T Jo JuUN0d 92U dARY DB [|IM J3YI0 Yded 03 3424 1yl 5393[qo om) ‘uoinulyap Aq asnedaq ‘)5 Buiunod a3uaiayal pIoAy 1y
(PIOAR | PINOYS (S)aWayds D5 JeYAN “I9Y30 UdEd 03 S3dU13434 [B1]PAd Yum S193[qO 4O S30| 9ARY | :D

's303[qo uaamiaq ui pajeulw|d aq ued ,sajoy, Alowaw pue parebaibbe aq ued s3ra(qo ay3 aduls 191399 SHIOM DEdLUO) pue e ‘buinunod aduasaa4 10 deams pue Sjiew asn NoA Ji uoue1uau16r:u} AJowaLu JO S10| Ul S}NSaJ UOIIeNUS SIY] 1Y

et trmtmoomrmm i At vt bt vt o ey o~ b L\ ot st~y ke~ o~ =~ m bt s A 5 R O L

Mobile User

Garbage Collection Summary

+
$-\e/
Obviously, garbage collection adds extra storage and performance iyt
overhead, but with clever engineering this can be minimized. ~ r‘\ ﬁ
—
w
JAND,
§m“““ As such, garbage collection is pretty much a de-facto
BUDSETL) standard in most modern programming languages
= prog glanguag

The one area where Ianguages with garbage
collection are frowne -tlme devices

c merust |0 these environmments, languages like C and Rust
Programming

Language are ysed — both of which don't use GC.

Programming

Mobile User

et rrmm e m e mm mmmm mt mmr o memm mammmm nn tmat n e e tm e e me s e et e Fra e e s me i e m mm e m s m e s niap mamemmnmas

A: This situation results in lots of memory fragmentation if you use mark and sweep or reference counting. Mark and compatt works better since the objects can be aggregated and memory "holes” can be eliminated in between objects.

Q: | have lots of objects with cyclical references to each other. What GC scheme(s) should | avoid?
A: Avoid reference counting GC, because by definition, two objects that refer to each other will each have reference count of 1, meaning that their reference count will never reach zero even if are no longer referred to by any variablesin a
program.

Q: | am running on a low-RAM device. What GC scheme(s) are best suited for this?
Mark and sweep would be best. Mark and compact needs to reserve half the memory for compaction, and reference counting requires extra memory stored with each object to maintain reference counts.

Q: | arm writing a program for a real-time device. What GC scheme(s) are best suited for this?
Reference counting would be best (though still not ideal) since it doesn't freeze the computer while GC occurs. Objects are GCed as they are no longer referred to, generally resulting in incremental GC of objects. Use of a queue of pending
objects to free to deal with cascades can help even out the load of GC over time,

One more peint: mark and sweep (and to a lesser extent, mark and compact) maf cause thrashing with OS5 paging. Why? Here's an answer from former student Victor Chinnappan:

This most likely has to do with locality. It is true that mark-and-sweep is not thigwe! - ethrashing occurs and |t doesn't occur in all cases for mark-and-sweep but let's look at an example.

Imagine storing large amounts of data such that RAM is pretty much full. That would lea ST hEvingtarun, Markvand -sweep will have to traverse through all the memory blocks in our heap. Mow if our heap uses a lot of
pages and our RAM is not large enough to store all of them, we woy
Note: Fragmentation also makes it worse (less usable blacks and

Model
-time (sincé 1 is usually instant)

more efficient usage si e free

upd atingcounts needs to be
updating on every operation could

cascading
reqtlirec axnlic

Mobile User

Mobile User
Pros:

simple
usually real-time (since reclamation is usually instant)
more efficient usage since blocks are freed immediately
Cons:

updating counts needs to be thread-safe (this is a huge issue!)
updating on every operation could be expensive (both in time and space)
cascading deletions
requires explicit cycle handling

Mobile User

{ém A (&M The Ownership M@

In the ownership model, every object is "owned" by one or more variables in the program.

String Object:
"I'm owned!!"

JoJef

(M When the last owner variable's lifetime ends, the object it owns is freed automatically. /\‘(\

/Ow o N @@/\W{Z
(Zﬁ{g(In some implementations, ownership can be transferred (aka "moved") to a new variable, H/vé

(/b(% invalidating the old variable!

o~ A %Sﬁ/% ol ab)&ttég) ?Uf?
var sl = new String("I'm owned!") After:varsi=...
ot ot/

var s2 = si1 /
: |
print(sl) // ERROR! After:vars2=s1

String Object:
"I'm owned!!"

String Qbject:
"I'm owned!!"

String Object:
"I'm owned!!"

Mobile User

o Rust's Ownership Model: Move Semantics..0m¢ -
227 - coyl
Qfﬁ— In Rust's ownership model, @ject is owned by a single variable im C/‘(/éLyéJu

/F{‘ 270
/(b(j When that variable's lifetime ends, the object it owns is freed. W

In Rust, ownership is transferred to a varlable via a55|gnment or param
/@@Aﬁer such a transfer, the old ow ﬂ’(féﬁw

// Rust example show1ng wne ship concept
Eé 62§;§3;¢7D“/¥L
fn foo (s3: trlng) &L/\/I/—’/

println!("{}", s3); 5527 ;7
}// s3's lifetime ends ject [f[l«7 \ES
V\‘/HV‘(QQ) égﬁ OMNV(
fn main() { P
let s1 = StringZ:from("I'm owned!!"); %ⅈz;
let s2 = sl1; /// Ownership xferred to s2
foo(s2); ﬂ4fr552ﬁ9LA/v76
println! ("{}", s2)y // Compiler error!

} // Matbibgfeefwetendisgedtring object freed §B OO”V(C@ 7%\/\/‘6/

Mobile User

e Rust's Ownership Model: Move Semantics
Coyt 4[Rust's ownership model also supports Iﬁl@ where a

W %, C variable may refer to an object without taking ownership.

p . . . - C)W [
The borrower may request @ read/write access (for thread safety) 2 @

l

@exclusive read-o\nry—d@ 5
// Rust example S%%WMM‘_‘ (97 Z// %7
= , 7/\1/4(5

fn foo (s3: &String) {
println!("{}", s3); _
}// s3 goes out of scope, no object freed! /Sarcastlc Robot Says: \

) EDNI Rust only uses ownership
fn main() { t%. } to trot primitive values.

let s1 = String::from("I'm owned!!");

And... you can make copies of values, if
let s2 = s1; // Ownership xferred to s2 BRDBROGRREDOE

foo(&s2)5— —— K

intin!("{}", s2); // This is valid! M

}// s2 goes out of scope, string object freed Cﬂmﬁ//% C¥n
)] e §lov

/

Mobile User

C++'s Ownership Model: Smart Pointers

A sr is a C++ class th ' itional pointer
. . ?.-—-—"'"__—-_-—-
but also provides automatic memory management.

Each smart pointer object holds a traditional pointer " E8Ee
I . other fields
that refers to a dynamically allocated object or array. S

. —_—

Clgss ifgat‘tz"ifger‘ { Each smart pointer is an owner of its assigned
~>Manr olnter] _ _
Z/ { delete ptr ; } heap-allocated p responsible for

WW eeing it when it's no longer nee

When copies are made of a smart pointer, they
coordinate and keep track of how many of them

Trre—
) it

@Qu4r

Mobile User

std::unique_ptr

A unique_ptris a smart pointer that e owns the responsibility for freeing a
located objegt. When the UP goes out of scope, it frees the object.

- _ o,

You pass in the parameters for

: : A VX
#include<memory> // needed for unique_ptr construction of your object to // nerd.h \}'\/\nf
— AQ,‘/AQ make_unique —it'll automagically

#include "nerd.h" O~ - V(/N forward them to your c'tor! class Nerd {
F/H & = public: %q
int main() { (- Nerd(string name, 'int IQ)
std::unique_ptr<Nerd> p = std::make_unique<Nerd>("Carey", 100); void study()/ { é)\f’\ﬁ”
p->study(); // p acts like a regular ptr! Instead of using the new command, we call /\%/‘
std: :unique_ptr<Nerd> p2 = p; // ERROR! llocate FAM and consructa e abjec o oA

Y} // p goes out of scope - frees the Nerd

A+id wherra Unique pointer goes
out of scope, it auto-deletes the
dynamic object it owns.

Mobile User

std::shared_ptr

A shared_pointer is a smart poi
N—— - .
heap-allocated object. W

—

n the last

oes away, it frees the object.

#include<memory>

// needed for shared ptr

#include

"nerd.h"

td: :vector<std: :shared ptr<Nerd>>

=
all my nerds;

void keep_ track of nerd(std:
all my nerds.push_back(n);
} // n goes out of scope

int main() {
std: :shared ptr<Nerd> p =
keep fEraci-of _nerd(p);
} // p goes out of scope

:shared ptr<Nerd> n) {

std:

// globals like all my nerds are destructed

shared pointer for a Nerd...

:make_shared

Here's how we define a

4

When we pass a shared_ptr
by value, it makes another
copy of the smart pointer!

’ \

Lot
D 1)

e ——

Mobile User

s 0a33500HERD) ol
cncffiif:aucsnn;u-A’dc:cq.. .
spG/ITLRN0RE" €

/47 ‘-u' 1608))) |
?_,{) ‘ Oiuect oriented progranming

ﬁg'vfriuu:

e nn C . ' “
r NGRS LIARCUANL oac.ar.uun,)
) Lﬂhceneﬂw:Lcu ey

(P'car.aev.wuveaun;uu
) ' y

aSatet V. Wihat ?“"ﬁr’i‘i‘i"é}:sp,m. all var|
: | B = Viriable. as-mLHSs e
mappens |
When /

Objects Die?

fond -

becatfse it guarantees memory cleanup &
peollector at runtimet

Mobile User
This is known as a zero cost abstraction because it guarantees memory cleanup & safety without the additional overhead of a garbage collector at runtime!

Mobile User
An interesting note on Rust’s design philosphy: all variables are immutable by default! We must explicitly declare a variable as mutable in order to modify it. This idea carries over to borrowing. Unless marked as mutable, borrowing creates an immutable reference. This leads to much safer code! One last thing: we can only have one mutable reference to a variable at a time. Try to think about why that might be!

Mobile User

Memory Safety: What Happens When Objects Die?

Many objects hold res

rces (e.g.: dyna 'Ies) which

need to be released when their lifetime ends.

l(/@w/

O,V\A?\f?’

AT
2C

There are three ways this is handled in modein languages.

Destructor Methods

Destructors are automatically called
when an object's lifetime ends.

It is guaranteed that a destructor
will runimmediately at this time.

Finalizer Methods

An object's finalizer method is called
by the gaibage collector before it
frees the object's memory.

Since garbage collection can occur
at any tirne (or not at all), you can't
predict when/if a finalizer will run!

Manual Disposal Method
The programmer adds a "disposal()"

their code toexplicitly cali it to force
the disposal of resources.

It's like'a manually-invoked
destructor.

-~) o N __— A~

Non-GC languages, e.q.-C++

GC languages, e.g.:
C#, Go, Java, Python

Manual Disposal languages, e.q.:
C#, Java, Swift

Mobile User

What Happens When Objects Die: Destructors Ajo hore

void doSomeProcessing() {

Destructors are only used in Iangu.ages with TempFile@ new TempFile();
memory managenment, like C++. W

if (dont_need temp file anymore())
delete t;

There are deterministic rules that govern
when(ggstruc’mrc are run, so the programmer
can ensur

Our object's lifetime is
deterministic — the programmer

can control exactly when the
} destructor will run.

Since the programmer can control when

they run, you can use destructors to release void otherFunc() {
NetworkConnection n("www.ucla.edu");

J

Similarly, the destructors for local variables are
guaranteed to run when the variables' lifetimes

ends.

Mobile User

What Happens When Objects Die: Finalizers

In GC lan uagegrné;;;;;;;;ii;;@

So finalizers are used to relea ed

cohnectio hich a

Unlike a destructor, a finalizer may not.run at a

predictable time or at all, si be
garbage collectedat any time (or not at all)!

Swmetheycantb
J!’?'

We'll learn more aboutfinalizers when we
cover Object Oriented Programmin
R

// Java finalization example
public class SomeClass {

// called by the garbage collector

protected void fiQE}EEE_’//,EQWS_Ithwable

{
// Free unmanaged resources held by SomeObj

Python finalizer method
class SomeClass :

called by the garbage collector
def del (self)y+——
{;\m(/'/’

Finalization code goes here

Mobile User

What Happens When Objects Die: Disposal Methods

A disposal method i nction that the

programmer must (nanually call to free non-

// C# dispose example
public class FontLoader : IDisposable

¢ VL«w/<6;L4212,
memory resources (e.g., Nnetwork conn) e \);(\/L

osal methods in GC languag
because you can't count on a finalizer to run!

Disposal provides a guaranteed way to
release unmanaged resources when needed.

. If the programmer forgets to
call Dispose(), it'll never run!

A;\ \1 %.Dispose();

public void Dispose()

{
// do _manual disposal here, e.g., free
// mp files, close network sockets, etc
}
}
var”’f = new FontLoader(...);

. // use f to draw fonts

Mobile User

A Final Word on C and C++ f

As much as | like C++, it's by far@mf‘jﬁa e in wide use today!

use of dangling pointers to dead objects

Mobile User

A
y

Classify That Language: Memory Safety

class Person {
init(name: String) { Self.name
varapartment: Apartment?

}

class Apartment { _ .
let unit: String What type of GC might this
init(unit: String) { self.unit = unit } |anguage be using:
var tenant: Person?

) Mark and Sweep

var pers:Person? = Person(name: "Dean Boelter") Mark an |

var apt:Apartment? = Apartment(unit: "11C") eference Countlng

pers!.apartment = apt

apt!.tenant = pers

pers = nil
apt = nil

Mobile User

,)‘L‘ Classify That Language: Memory Safety

class Person {
let name: String
init(name: String) { self.name
var apartment: Apartment?

¥

class Apartment {
let unit: String
init(unit: String) { self.unit = unit }
var tenant: Person?

¥

var pers:Person? = Person(name: "Deanh Boelter")
var apt:Apartment? = Apartment(unit: "11C")
pers!.apartment = apt

apt!.tenant = pers

A Mark and Sweep collector would have
. no problem GCing these objects here...
pers = nil So the language must be using

apt = nil Refeperice Coufrting.

For some reason, the pers
and apt objects never get
finalized in this program.

What type of GC might this
language be using:
Mark and Sweep
Mark and Compact
Reference Counting

where they both point at each other.

This creates a cycle between the objects ’

—

T

hi&?}ivs Swift! fo o<

Mobile User

Mutability/Immutability

ﬁthe end of this section, you should be able to:

Take a new language and understand-what features it has to create

ant variables a
Understand how-thesefe =5 Cdl

25e-Féata

Mobile User

Mutability/Immutability
What's the big picture?

Immutability is the property that a

e/value/object is rea
C anged (ak mutated") once |n|t|al|zed

Rather than modn‘ymg an eX|st|ng value, when a
new value is needed,

Immutability is provided by language features,
y hardware-level protection!

lmm ility has many benefits, including

inating may bugs, speeding garbage
collection, etc!

Mobile User

Immutability — Four Approaches

Slass Immutability
The programmer can designate that all
objects of a class are immutable after
construction.

Object Immutabjlity
The programmer can designate some
objects of a particular class as immutable —
mutations are blocked to those objects!

Assignability Immutability
Z ——)

The programmer can designate that a
variable may not be re-assigned to a new
value - but mutations can be made to the

original referred-to object!

Reference Immutability
The programmer can prevent a mutable
object from being mutated via a
reference that's marked as immutable

def main(): # Python
s = "Hello!"
s[@0] = 'J' # ERROR!

int main() {
Nerd j("Joe",200); // mutable!
const Nerd n("Carey",100);
n.setIQ(120); // ERROR!

}

public static void someFunc() {
final Nerd n = Nerd("Carey",100);
n = Nerd("Joe,200); // ERROR!
n.setIQ(120); // OK!Ill

}

void examine(const Nerd& n);

int main() {
Nerd j("Joe",200);
examine(Jj);

A
7w

CHALLENGE! Which of
these approaches can be
implemented with C++'s

const keyword?

Ay|IqeInWw 3dUaJa4a4 pue ‘Ajjigeinw
Ayjiqeubisse ‘Ajjigeinwwi 393[qQ Jamsuy

Mobile User

Why Immutability?

Fewer Bugs

f(x,x); If a value can't change,
If f() can't modify x, you can't have race
then no aliasing bugs! conditions!

map[x] =y; Circle c = new Circle();
x.change_identity(); c.setRadius(10);
cout << maplx]; /[777 c.getArea(); /] ??

Temporal Coupling Bug:

A bug where the programmer does some initialization out of
order —or not at all - resulting in use of an incomplete object.

Improved Code Quality

There are far fewer
failure modes since
objects are frozen

Makes programs
easier to read and
reason about

The compiler can make Objects can be cached
assumptions about without concern their
objects that can't change values have changed

Objects are never left in an
inconsistent state by definition

A

Classify That Language: Immutability

struct Point { :
x: isize, The following program

y: isize, generates two compiler

) errors.
impl Point {

fn new(x: isize, y: isize) -> Self { Whatimmutabi“ty
Self { x, y }
) approach(es) are used by the

fn change(&mut self, x: isize, y: isize) foIIowing Ianguage?
{ self.x = x; self.y =vy; }
}

fn main() {
let p = Point::new(@, 0);

p.change(10,20); (. cannot borrow 'p* as mutable
-

p = Point::new(1, 2); /. cannot assign twice to
} B immutable variable 'p°

,X‘ Classify That Language: Immutability

struct Point { :
< isize, The following programn

y: isize, generates two compiler

¥

errors.
impl Point {
fn new(x: isize, y: isize) -> Self { Whatimmutabi“ty
Self X,
) { %y} approach(es) are used by the
fn change(&mut self, x: isize, y: isize) foIIowing Ianguage?

{ self.x = x; self.y =y; }

} In this language, let indicates that
immutability is to be applied. This error indicates that the language This error indicates that the language
provides Object Immutability. provides Assignment Immutability.

fn main() <
let p = Point::new(@, 0);

.
p-change(10,20); @ This is Rust!

p = Point::new(1, 2); /.
-

cannot assign twice to
immutable variable "p°

}

Mobile User

Mutability
You might remember the concept of immutability from our discussion of functional programming: it’s used to describe objects
that are “read only.” In other words, once an immutable object has been defined, it cannot be changed.

Instead, we simply construct a new object based on the original, including any changes we would like to make. There are tons
of benefits to immutability including eliminating bugs, speeding up garbage collection, and more! Let’s take a closer look.

There are four approaches to immutability:

Class immutability: The programmer can designate that all objects of a class are immutable after construction.
Object immutability: The programmer can designate some objects of a particular class as immutable —mutations are blocked to
those objects!
Assignability immutability: The programmer can designate that a variable may not be re-assigned to a new value - but
mutations can be made to the original referred-to object!
Reference immutability: The programmer can prevent a mutable object from being mutated via a reference that’s marked as
immutable
There are tons of benefits!

eliminates aliasing bugs
reduces race conditions in multithreaded code
eliminates identity variability bugs
elminates temporal coupling bugs
removes side effects, making programs easier to reason about
makes testing easier
enables runtime optimizations
enables easy caching
objects are never left in an inconsistent state by definition

Mobile User

Mobile User
Mutability
You might remember the concept of immutability from our discussion of functional programming: it’s used to describe objects that are “read only.” In other words, once an immutable object has been defined, it cannot be changed.

Instead, we simply construct a new object based on the original, including any changes we would like to make. There are tons of benefits to immutability including eliminating bugs, speeding up garbage collection, and more! Let’s take a closer look.

There are four approaches to immutability:

Class immutability: The programmer can designate that all objects of a class are immutable after construction.
Object immutability: The programmer can designate some objects of a particular class as immutable –mutations are blocked to those objects!
Assignability immutability: The programmer can designate that a variable may not be re-assigned to a new value - but mutations can be made to the original referred-to object!
Reference immutability: The programmer can prevent a mutable object from being mutated via a reference that’s marked as immutable
There are tons of benefits!

eliminates aliasing bugs
reduces race conditions in multithreaded code
eliminates identity variability bugs
elminates temporal coupling bugs
removes side effects, making programs easier to reason about
makes testing easier
enables runtime optimizations
enables easy caching
objects are never left in an inconsistent state by definition

« Data-Function-palooza

This section covers Variable Binding Semantics and Parameter Passing - two
intimately-related topics that bridge both our data and function units.

Mobile User

Variable Binding and Parameter Passing Semantics

By the end of this section, you should be able to:

Take a new language and understand how it associates variable
names with values and passes parameters to functions!

Understand the implications of each approach to avoid common bugs.

Binding and Parameter Passing Semantics
What's the big picture?

Binding Semantics is the term we use to describe the different
ways that languages associate variable names (e.g., x) with the
actual storage in RAM that holds their values (e.g., 5).

// C++ # python

int main() { def main():
int x = 5; X =5

}

== ==

Forinstance, some languages Other languages associate a
directly associate a variable variable name with a pointer to
name with its value. a value stored elsewhere.

Each approach has implications for how you write code, pass
variables to functions, and what bugs you run into!

Variable Binding Semantics

Binding Semantics describe how a variable name is bound to a storage+value.

Value Semantics Reference Semantics Object Reference Name/Need Semantics
A variable name is directly Semantics A variable name is bound
A variable name is directly bound to A variable name is bound to a pointer that points to
bound to the that like an to a pointer that points to an expression graph that
holds the value alias an can be evaluated to get a
value
int main() { int main() { def main(): main = do
int x = 5; int x = 5; X =5 let n = 2*10
int &r = x; let x = 5*n+3
} } N

X

Java, JavaScript,
C++, Go, Java C++, C#, PHP, Rust Python, Ruby
(And C++ via pointers)

Haskell, R, Scala

Parameter Passing Semantics

Parameter Passing Semantics are directly related to Binding Semantics!

Object Reference Name/Need Semantics
Semantics

Value Semantics Reference Semantics

The formal parameter is a The formal parameter is a
pointer that points to the pointer that points to an
argument object expression graph

The formal parameter The formal parameter is
gets a distinct copy of the bound to the argument's
argument's value/object storage, like an alias

int f(int q) {..} int f(int &r) {..} def f(x): f n = 5*n+3

int main() {q int main() {

int x = 5; int x = 5; def main():

BT £(x); r z =5
} Bl | | 25 f(z) °

N

main = do
let z = ¥ (2*10)

Variable Binding Semantics

Let's learn the following about each approach using the following framework:

How does What happens when we What happens when we
of the variable work do a "variable update" do a "variable mutation”

int main() { int main() { int main() {
Dog d = Dog("Koda"); Dog d = Dog("Koda");
Dog e = Dog("Fido"); Dog e = d

d = e;
d.set bark(10);

}

Value Semantics

Each variable name is directly "bound" to storage

on the stack that holds the variable's value. X
How does "initial binding" What happens when we do What happens when we do
of the variable work a "variable update" a "variable mutation"
int main() { 51| "abc" void foo(string s3) { s3| "abc"
string s1 = "abc";
string s2 = s1; >2| "abc” }
} int main() { s1| "abc"
string s1 = "abc";
foo(sl);

¥

Each variable name is directly "bound" to storage
on the stack that holds the variable's value.

How does "initial binding"

of the variable work

Value Semantics

1

What happens when we do
a "variable mutation"

int main() {

string sl = "abc";
string s2 = sl;
—>s2 = "def”;

}

What happens when we do
a "variable update"

51| "abc" void foo(string s3) { s3| "ghi"
#53 — llghill
52 Ilde_Fll }
int main() { s1| "abc"
string sl = "abc";
foo(sl);

¥

Value Semantics

Each variable name is directly "bound" to storage
on the stack that holds the variable's value.

How does "initial binding"

of the variable work

What happens when we do

I

What happens when we do
a "variable mutation"

int main() {

string sl = "abc";
string s2 = sl;
—>s2.append("!");

}

S1

S2

a "variable update"

abc

"abC!"

void foo(string s3) {
—»s3.append("!");

¥

int main() {
string sl =
foo(sl);

abc";

¥

53

S1

Ilabc!ll

abc

Takeaway: With Value Semantics, each variable has its own separate storage,
so assignment/mutation of one variable doesn't affect the others.

Reference Semantics

A reference variable acts as an alias for an existing variable, allowing n
you to access/modify the original variable's value through that alias. *

How does "initial binding" What happens when we do What happens when we do
of the variable work a "variable update" a "variable mutation"

int main() { ?i "Ibhc" void foo(string &r2) {
string sl = "abc"; e
string &rl = sl; }
} int main() { > "abc"
string s1 = "abc";

foo(sl);

The reference is an }
alias for the original
variable!

The reference is an
alias for the original
variable!

Reference Semantics

A reference variable acts as an alias for an existing variable, allowing | n
you to access/modify the original variable's value through that alias. *

What happens when we do What happens when we do
a "variable update" a "variable mutation"

How does "initial binding"

of the variable work

. . S1MTm - . . Notice that changes
int méln() {)) > "def void fo?(sFrlng &r2) { to 12 actually change
string s1 = "abc"; —»r2 = "ghi"; 1
string &rl = si; }
—>rl = "def";
) int main() { s1["ghi”
string sl = "abc";
Notice that changes to foo(sl);
r1 actually change s1. }

And the change persists

even after we return from
the foo() function!

A reference variable acts as an alias for an existing variable, allowing |
you to access/modify the original variable's value through that alias.

How does "initial binding"

of the variable work

int main() {
string sl = "abc";
string &rl = s1;
—>rl.append("!");

Reference Semantics

X

What happens when we do What happens when we do
a "variable update" a "variable mutation"

S1
r

Notice that changes to r1

actually change s1.

llabC!II

void foo(string &
—>r2.append("!");

¥

int main() {
string sl =
foo(sl

r-2) { Notice that changes tor2
actually change s1.

Sl

"abc!™

And the change persists even
after we return from the
foo() function!

Takeaway: With reference semantics, both assignment (e.g., r1 = "def") and
mutation (e.qg., r2.append("!")) change the referred-to variable (e.g., s1).

Reference Semantics: Examples

Let's see how references work in Swift and C#:

// References in Swift

func foo (s: inout String) {
s.append("!")
} And we use the inout

keyword for the formal { _ _
parameter. static void foo(ref string s) {

// References in C#
class Program

var message = "abc” S += "I";
foo(s: &uessage) }
print(messa} // Output: abc!

In Swift we use an & to static void Main () {

indicate a variable is string message = "abc";
passed by reference. ‘FOO(ref message) ;
Console .M

} In C# we use ref

eLine(message); // Output: abc!

in both places.

Object Reference Semantics

Each variable name is bound to a pointer X“
that points to a separate object/value.

How does "initial binding" What happens when we do

What happens when we do

of the variable work a "variable update" a "variable mutation"

The object reference

def main variable is a pointer. def -FOO(SB)

sl = "abc

end The new pbject
reference points at our
original object/value.

def main
sl = "abc"

#1: When we define a new object foo (s1)
reference (s2) and assign it to an
existing one (s1)...

#2: The new object
reference copies the
address in the old
pointer...

#3: So they both

point at the same
value/object in
memory.

Object Reference Semantics T —

points our s3

pointer at a new
X value!

What happens when we do
a "variable mutation"

Each variable name is bound to a pointer
that points to a separate object/value.

How does "initial binding" What happens when we do
of the variable work a "variable update"

It has no effect on s1,

which still points to def foo(s3)
n b II! [1] L] |
ebe —»s3 = "ghi
end
def main
This variable update sl = "abc
points our s2 pointer at a foo (sl)
new value! end

Object Reference Semantics

Each variable name is bound to a pointer
that points to a separate object/value.

How does "initial binding"

of the variable work

def main
sl = "abc"
s2 = sl

—>s2.concat("!")
end

#2: actually
change s1's
object too.
#3: Because
they both
refer to the

same string
object!

#1: Notice that
mutating calls to
s2's object...

And the change persists
even after we return
from the foo() function!

What happens when we do
a "variable update"

-

What hz
a "ve

“~nwedo
#4: Noticethat | - T
mutating calls tion
to s3's object...

def foo(s3)
—> s3.concat(
end

def main
sl = "abc"
foo(sl)
“end

11} l 1
4) #5: actually
change s1's

object too!

#6: Because they
both refer to the
same string object!

Object Reference Semantics

Each variable name is bound to a pointer X“
that points to a separate object/value.

How does "initial binding" What happens when we do
of the variable work a "variable update"

What happens when we do

a "variable mutation"

def main def foo(y) Y
X = [1,2,3] X-\ —y[1] = 9

y = X y - - end \
BRI — S e i

<

end 1* é def main x-/ \
‘ x = [1,2,3] 1

N

-
<

E foo(x) 9

end

Takeaway: When two object references point to the same object, assignment
of one to a new value does not change the other, but mutation impacts both.

Object Reference Challenge!

Consider these programs in Python and Ruby, and their output:

Python # Ruby
def main(): def main
x = [1, 2] x = [1, 2]
y = X y = X
—X += [3] —X += [3]
print(x) puts X
print(y) puts vy
end
[1, 2, 3] [1, 2, 3]
[1, 2, 3] [1, 2]

X Why does += change the shared list of
¥ W xandyinPython, but notin Ruby?

Consider th

Object Reference Challenge!

This is a variable

Python

def main():

#X:

x.append(3)

[1, 2, 3]
[1, 2, 3]

mutation!

hon and Ruby, ana

This is a variable

!

print(x) X
Y-L>-
_T,l,
: \

2

Ruby
def main
—_— X =
—>y =
—>X += [3] # X =x+ [3 i,]
puts X X vV
pUtS y 1] 2] 3
end /BT,
[1, 2, 3] o
[1, 2]

X Why does += change the shared list of
x and y in Python, but not in Ruby?

iA +x = x 21epdn 3|qeLieA ay3 Joy sebns d11oeuAs S| A=+ X ‘Aqny u1ing
‘(A)puadde-x ||ed buireinw ay3 oy sebns d130e3UAS I A =+ X ‘UOYIAd Ul 9snedag uamsuy

Object References: Java

public class Nerd {
Nerd(String name, int iq) {
name_ = name;
ig_ = 1iq;
}

private String name_;
private int iq_;

¥

public class SomeOtherClass {
void someFunc() {
Nerd nl = new Nerd("Carey",100);
Nerd n2 = new Nerd("Paul",200);
—»n2 = nl;

-
¥

ni

n2

Java uses object reference semantics
for all objects... but not for primitive
types like ints and doubles.

And in fact, object reference
semantics is the dominant paradigm
in most modern languages:

C#, Java, Javascript, Python, etc.

1EIn= "Carey" |

O8N 100

tEln=A "Paul" |

O -00

Object Reference Semantics: Testing for Equality

Python object identity vs. equality
class Dog:
def init (self, name, weight):
self.name = name
self.weight = weight

def eq (self,other):
return self.name == other.name and \
self.weight == other.weight

def main(): 4. . "fido"
dl = Dog("Fido",24) 24
d2 = Dog("Fido",24) "fido"

24

d 2 EPYAs

an

if d1 == d2:
print("dl has object equality with d2")
if dl1 is d2:

print("dl and d2 have the same identity")
if dl1 is di:

print("dl and d1 have the same identity")

X— CHALLENGE! When we compare two
§ Y objectreferences with == what happens?

Object Reference Semantics: Testing for Equality

Python object identity vs. equality
class Dog: k CHALLENGE! When we compare two

def init (self, name, weight):
self.name = name

§ object references with == what happens?

Dunder (aka "double underscore™)

SEI'F . Weight = WEight functions like __eq__ enable Python
objects to customize how they're
d e'F eq (se l_F ot he P) . compared, printed, iterated over, etc.
S N J °
return self.name == other.name and \

self.weight == other.weight There are two concepts of equality

when it comes to object references:
def main(): d1
dl = Dog("Fido",24) 24

d2 = Dog("Fido",

Object Identity: Do two object
references refer to the same object at

In Python, comparingtwo 2240 the same address in RAM.
object references with ==

if dl1 == d2: tests for object equality. Object Equality: Do two object
print("dl has object equality with d2") e e B references refer to objects that have

if d1 is d2: R equivalent values (even if they're

. ")) M with "is" tests for th different objects in RAM).
print("dl and d2 have the same identity :Va'meibjeecstisdfr:tit;)

if dl is : You might also see d1 has object equality with d2
print("dl and d1 have the same identity") Aweichivill d1 and d1 have the same identity

isthe same as "is".

public class Dog {

public Boolean equals(Dog other) {
return name_.equals(other.name_) &&
weight == other.weight ;

¥

String name_;

: Testing for Equality

Ok, here's the Java version!

In Java, we use the equals()
method to test if two objects are

int weight_;
sht_; logically equal.

}

public OtherClass {
public static void main(String args
Dog d1 = new Dog("Fido",24);
Dog d2 = new Dog("Fido", 24

dl & d2 have equality");

if (d2 ==-d1)
System.out.println("dl & d2 have same identity");
if (d1 == di1)
System.out.println("dl & d1 have same identity");
}
}

In Java, comparing two object
references with == tests for
object identity.

Object Identity: Do two object references refer
to the same object at the same address in RAM.

Object Equality: Do two object references refer
to objects that have equivalent values (even if
they're different objects in RAM).

d1 & d2 have equality
d1 and d1 have same identity

Pointers: AType of Object Reference

When we pass a pointer to a function, it's identical to passing by object reference! Let's see!

void f(string *x, string *y) { f()'s Activation Record
X 2000

y = X,
} Just like assignments with
object references, this just

copies the pointer from x into y.

y 2020

int main() {
string ¢ = "Chocolate"”;

| /)

string v = "Vanilla"; main()'s Activation Record
2000 2020 C "Chocolate"
-F(&CJ &V)J. VAL -ll n

cout << // Vanilla Vanilla

But does nothing to
the pointed-to

objects/values!

When we use & to get the address of a

value/object, it gives us a pointer —
that's basically an object reference!

Pass by Pointer: A Type of Pass by Object Reference

Use of the * lets us Ok, but what if we use *s to dereference our pointers?

read/write the pointed-

to objects! Then we can read/write the pointed-to object itself!

ring *x, string *y) { f()'s Activation Record

fy = *X; X 2000

J y 2020

int main() {
string ¢ = "Chocolate"”;
string v = "Vanilla"; main()'s Activation Record
2000 2020 C "Chocolate"
f(&c, &v);

cout << v; // Chocolate v "Vanilla

}

Moral: Using dereferenced pointers work the same as reference semantics in C++!

Ourintent here isto cl iable out, " "
e Aliasing
a! So this clears our input a before it can T . "
be processed! A||aS|ng OCCuUrs When tWO pal‘ametel’s tO d
function unknowingly refer to the same

value/object and the function modifies it.

filter()'s Activation Record

void fiMer(set<int> &in
set<int> &out) {
out.clear();
for (auto x: in)
if (is_prime(x)) out.insert(x);

parameters!

Aliasing can occur any
time you use references
or object references.

} main()'s Activation Record
It can cause subtle and
. : a {5, 74{1, 22} ec .
int main() { difficult to find bugs —
set<int> a; . |
... // ill up a with #s let's see!
filter(a, a); // wrong result!
} Notice we're passing in a for both To avoid aliasing, prefer returning new objects

instead of mutating passed-in objects.

Name Semantics

Languages with name semantics bind each variable name to the equivalent of an
expression graph, which once evaluated, yields the final value of the variable.

When a variable's value is needed (e.g., to be printed), the expression represented
by the graph is "lazily evaluated" and a value is produced.

Any computation in the

SHCHIIDE Activation Record Heap Memory
until it's absolutely

required.

Rather than computing the

X result, a graph is constructed
main = do which represents the eventual
tation.
let x = compu
let y =
let z =
print z
print z

To print the result,

Every time you force evaluation
of the variable, the expression
is fully re-evaluated!

the language finally
forces evaluation of
the expression.

Need Semantics

Need semantics works almost exactly like Name semantics!

The only difference is that the language memoizes (caches) the result
of each evaluation to eliminate redundant computations.

Activation Record Heap Memory
main = do X
let x =5
let y = 3 + x
let z = y"2+7
—>print z
print z

The first evaluation would
All later evaluations compute and then memoize
can just use the the result of the expression.
memoized result!

Binding/Parameter Passing: How To Tell Which One

Imagine we give you a program and tell you its output...
How can you determine which binding strategy the language uses?

Start Value Semantics/

Pass by value

NO

Does assignment Is there an Do var.mutate()
affect the caller's expression that's calls affect the
variable? never evaluated? caller's variable?

YES YES

YES

Reference Semantics/ Name/Need Object Reference Semantics/

Pass by reference Semantics Pass by Object Reference

Inspired by former student Vincent Lin

hat Language: Parameter Passing

procedure funcl(v: Integer); Consider the following program,
begin which prints:

V :=V + 3;
end; gis 110

function func2(var v: Integer): Integer;

begin What parameter passing strategies is

v i= v+ 100; this lanquage using?
funcl(v); guag g:

end;

var
g, r: Integer,
begin
q := 10;
func2(q);
writeln('q 1is
end.

, d);

hat Language: Parameter Passing

procedure funcl(v: Integer); Consider the following program,

begin which prints:
A This is how we define a .

el pass-by-value parameter. g/l e

function func2(var v: Integer): Integer;

be;g/ir?_ "+ 1om. This is how we define a pass- ANSELCIS] passing strategies is
'FUI:ICI(V); ’ by-reference parameter. this language using?

end;

var
g, r: Integer,
begin
q := 10;
func2(q);
writeln('q 1is

, d);

en d o SIY] j@ouaJtajal-Ag-ssed pue anjea-Aq
-ssed buisn siabenbue| siy] Uamsuy

i|edsed s

,k‘ Human Interpreter: Binding Strategies

object Main extends App { The program to the left was

def f(): Int = { : -
written in a lanquage that supports
println("Getting the value of x now!") guag _ PP
Need Semantics.

1 // returns 1 as the result of f()

¥
What does it print?

lazy val x = f()

lazy val y = 3 + x

lazy val z =y *y + 2
println("About to print!")

println(z)
println(z)

This is Scala!

A

g’ 'y Human Interpreter: Binding Strategies

object Main extends App { The program to the left was

def f(): Int = { : :
written in a lanquage that supports
println("Getting the value of x now!") guag PP

1 // returns 1 as the result of f() Need Semantics.

} All of these assignments

arelazy, so their What does it print?

computation is deferred!

lazy val x = f()

lazy val y = 3 + x
lazy val z =y *y + 2
println("About to print!")

This is the first time we need
the value of z, so this is when

p rintln (Z) the computation happens.
println(z)

Since this languages uses Need
semantics, the values of x, y and z are ie|eds si syl

cached so f() is not called again. oL

8T
imou x Jo anTeA 3yl Surilsn
jautud 031 3nogy

JoMsuy

