
Data-palooza



Your goal is to be able to pick up a new language and quickly 
understand how it manages types, variables and values.

In this segment, we’re going to focus on how 
languages manage data (types, variables & values).
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Answers:
A variable is a symbolic name associated with a storage location that contains a valueor a pointer(to a value).
A value is a piece of data with a type, that is either referred to by a variable or computed by a program expression. 

What's a variable?

What's a value?

a 3.14159a 3.14159

a = 3.14159

or...
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Ok, guess!

Its storage

The memory slots 
that holds the value

What are all the facets that make up a variable?

Its name

How you refer to the 
variable

Its type

A variable may (or 
may not) have an 

assigned type

Its value

The value being 
stored and its type

Its lifetime

The timeframe over 
which a variable 

exists

Its scope

When/where the 
variable name is 
visible to code

I’ll give you some hints…

Its name

N???

Its name

T???

Its name

V????

Its name

L???????

Its name

S??????

Its name

S????

Binding

How a variable name 
is connected to its 

current value

Its name

B??????

Mutability

Can a variable's value 
be changed

Its name

M?????????
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Ok, guess!

Its storage

The memory slots that holds the value

What are all the facets that make up a variable?

Its name

How you refer to the variable

Its type

A variable may (or may not) have an 
assigned type

Its value

The value being stored and its type

Its lifetime

The timeframe over which a variable 
exists

Its scope

When/where the variable name is visible 
to code

I’ll give you some hints…

Binding

How a variable name is connected to its 
current value

Mutability

Can a variable's value be changed
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What are all the facets that make up a value?

Mobile User
Almost all languages stipulate that names should contain valid characters
Almost all languages stipulate that names should not be the same as keywords or constants
Most languages have a rule that disallows spaces in variable names
Some languages have rules about special characters in names, some enforce length restrictions, and some even enforce some sort of case sensitivity rule.

Mobile User
Variable types
What can you infer about a value, given its type?

The set of legal values it can hold
The operations we can perform on it
How much memory you need
How to interpret the bytes stored in RAM
How values are converted between types



Its storage

The memory slots 
that holds the value

Its name

How you refer to the 
variable

Its type

A variable may (or 
may not) have an 

assigned type

Its value

The value being 
stored and its type

Its lifetime

The timeframe over 
which a variable 

exists

Its scope

When/where the 
variable name is 
visible to code

I’ll give you some hints…

Binding

How a variable name 
is connected to its 

current value

Mutability

Can a variable's value 
be changed

What are all the facets that make up a value?

Its type

A value always 
has a type

Its lifetime

The timeframe over 
which a value exists

Mutability

Can a value be 
changed

Its value

The value itself
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Variable Name Trivia!

! compute factorials from 1 to 10
integer nfact
nfact = 1
do i = 1, 10

nfact = nfact * i
print*,  i, "! is ", nfact

end do

Question: Why do most loops idiomatically use a 
variable named i or j for iteration?

Answer:
It all goes back to the first standardized programming language: Fortran
In Fortran, if you didn't explicitly declarea variable...
Then if the variable name begins with a -h or o -zits type was defaulted a real(i.e., double).
And if the variable's name begins with i-nits type was defaulted to an integer.
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Let's do some Deep Dives

Types
We'll understand how types are used, how languages check for valid types, 

and how they convert between types

Scoping and Lifetime
We'll learn how languages decide a variable's scope and lifetime 

Binding Semantics
We'll learn how languages associate variable names with values

Memory Safety
We'll learn how languages safeguard reads/writes to memory

Mutability
We'll learn how the mutability of variables impacts code correctness
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Types! Types! Types!

By the end of this section, you should be able to:

Take a new language and figure out what kind of typing system it uses.

Understand the implications of that typing system so you can write correct 
programs in that language.
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What is a Type?

What is a type and what are all the things a type specifies?

Mobile User
Actually, they’re not! It is possible to have a language with no types. Assembly languages are one such example of languages with no type system. They just have a register that holds a 32 (or 64) bit value. The value could represent anything (an integer, float, pointer, etc.). BLISS is another example of a language with no types.





What is a Type?

A type is a classification that is used to identify a category of data.

A type defines a range of values, size and encoding, what operations we can 
perform on it, where it can be used, and how it's converted/cast to other types.

What is a type and what are all the things a type specifies?

Size and Encoding

int: +, -, *, /, …
bool: &&, ||, !
Nerd: study()

Operations Usage ContextRange of Values Conversions/Casts
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What Do Languages Use Types For?

Type Checking

Dog d;
Cat c;
d = c;  // type mismatch

Type Conversion

float f = 3.14;
int i = f; // conversion 

Type Casting

Dog d;
Animal *a = &d;  // cast

Defining Variables

int age = 21;

Type Inference

var a = 5
print(type(a))  // "int"

Generics/Templates

list<int> stats;
map<string, int> dict;

Polymorphism

Dog d;
Animal *a = &d;  
a->talk();  // "woof!"
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In a typed language, must 
every variable have a type?

# Python
def foo(q):
if q:
x = "What's my type?"

else: 
x = 10

// C++

void foo() {
int x;
...

}

Answer:
No! If a given variableis "bound" to a single value, 
then it can be said to have a type. Otherwise not! 
That said, a valueis alwaysassociated with a type.

-- Haskell
f x = 

let exp = 2*3
in
x^exp

Variable Types?
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Composites

Primitives

Types of Types
Question: How many different types of types can you name?

Integers

Its name

I???????

Floating 
Point 

Numbers
Characters

Strings

Booleans
Enumerated 

Types
(Ordinals)

Unions
Records
(Structs)

Classes Tuples

Pointers

Function 
Types

Containers
(Arrays, 

Lists, Sets, 
Maps, ...)

Its name

F?????

Its name

C????

Its name

E????

Its name

B???????

Its name

P???????

Its name

R??????

Its name

U?????

Its name

C??????

Its name

S??????

Its name

T?????

Its name

C?????????

Its name

F???????

Generic 
Types

Its name

G???????

Others Boxed Types

Its name

B????

Ok, go!



Composites

Primitives

Types of Types
Question: How many different types of types can you name?

Integers
Floating Point 

Numbers
Characters

Strings

Booleans
Enumerated Types

(Ordinals)

Unions
Records
(Structs)

Classes Tuples

Pointers

Function Types

Containers
(Arrays, Lists, Sets, 

Maps, ...)

Generic TypesOthers Boxed Types

Ok, go!
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Composites

Primitives

Types of Types
Question: How many different types of types can you name?

Integers

Its name

I???????

Floating 
Point 

Numbers
Characters

Strings

Booleans
Enumerated 

Types
(Ordinals)

Unions
Records
(Structs)

Classes Tuples

Pointers

Function 
Types

Containers
(Arrays, 

Lists, Sets, 
Maps, ...)

Its name

F?????

Its name

C????

Its name

E????

Its name

B???????

Its name

P???????

Its name

R??????

Its name

U?????

Its name

C??????

Its name

S??????

Its name

T?????

Its name

C?????????

Its name

F???????

Generic 
Types

Its name

G???????

Others Boxed Types

Its name

B????

Haven't heard of enumerated types?

enum Mood {Happy, Sad, Excited, Silly};

int main() {
Mood m;
m = Excited;
if (m == Sad) cout << "Sorry!";

}

Haven't heard of unions (aka variants)?

union holds_one_of {
int i; double d; string s;
}

int main() {
holds_one_of x;  
x.i = 10;     // x holds an int now
x.s = "Carey" // now x holds a string

}

Haven't heard of boxed types?

A boxed type is just an object whose only data member is a primitive (like 
an int or a double).

class Integer {
public:

int get() const { return val_; }
private:

int val_;
};

What's a generic type?

A generic type is a type that is parameterized with one or more type parameters, e.g.:

template <class T>
class Collection {
public:

void add(T item) { arr_[count++] = item; }    
...

private:
T arr_[MAX_ITEMS];    
int count = 0;

}; 

Mobile User
In languages like Python that pass by object reference, this lets you “change” a primitive type’s value!



Mobile User



User-defined Types

class Circle {
public:
Circle(float rad) { ... }
float get_area() { ... }
private:

};

A type named Circle

Beyond built-in types like int, double and string...

languages also let users define new types.

For example, every time you define a...

struct Weather {
double temperature;
double humidity;
bool sunny, cloudy;

};

A type named Weather

enum Days {
Mon, Tues, Wed,   
Thurs, Fri, Sat, Sun

};

A type named
Days

interface Washable {
void wash();
void dry();

};

A type named Washable

The language implicitly defines...

Notice that a class 
is NOT a type...

but its definition creates 
one!

(An interface is a 
list of function 

declarations – it's 
like a fully-abstract 

class with no 
implementations 

or fields.
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Supertypes and Subtypes

The primary way we define such typing relationships is via class inheritance:

class Person {
public:
virtual void eat()
{ cout << "Nom nom"; }

virtual void sleep()
{ cout << "Zzzzz"; }

};

class Nerd: public Person {
public:
virtual void study() 
{ cout << "Learn, learn, learn"; }

}; 

Person 
class

Nerd 
class

subclass 
of

Implicitly defines a
Person 

type

Implicitly defines a
Nerd 
type

subtype 
of

As we learned in CS32, some types exhibit a supertype/subtype relationship, 
where a subtype inherits properties and behaviors from its supertype.
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Supertypes and Subtypes

In addition, we can define supertype/subtype relationships via interface inheritance:

Washable 
interface

Car class

implements

class Washable {     // C++ Interface
virtual void wash() = 0;
virtual void dry() = 0;

};

class Car: public Washable { 
virtual void wash() {

cout << "Use soap and water.";
}
virtual void dry() {

cout << "Use dish towel.";
}

}

Implicitly defines a
Washable 

type

Implicitly defines a Car type

subtype of

Mobile User



Supertypes and Subtypes

void bePersoney(Person &p) {
p.eat();
p.sleep();

}

int main() {
Nerd nancy;
bePersoney(nancy);

}

class Person {
public:
virtual void eat()
{ cout << "Nom nom"; }

virtual void sleep()
{ cout << "Zzzzz"; }

};

class Nerd: public Person {
public:
virtual void study() 
{ cout << "Learn, learn, learn"; }

}; 

Each subtype has its own unique operations but 
also inherits all operations from its supertype.

So supertypes/subtypes define not only a type relationship 
but also an operational relationship as well.

These operational relationships allow languages to
support capabilities like subtype polymorphism.

Since we know all 
Persons can eat and 

sleep...

we also know all 
Nerds can eat

and sleep!

This allows us to 
pass a Nerd...

to a function that 
accepts Persons...and know it will 

support the required 
operations!
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Value Types and Reference Types
Types come in two flavors:

Value Types

A value type is one that can be used to 
instantiate objects/values

(and define pointers/obj refs/references).

Reference Types

A reference type can only be used to define 
pointers/object references/references 

(but not instantiate objects/values).

class Dog {
public: 

Dog(string n) { name_ = n; }
void bark() { cout << "Woof\n"; }

private:
string name_;

};

Dog d("Kuma"), *p;

class Shape {
public: 

Shape(Color c) { color_ = c; }
virtual double area() = 0; 

private:
Color color_;

};

Why? Because we 
can use the type to 
instantiate objects.

(and define pointers, etc.) Shape s(Blue);  // Won't work!Shape *s;  // Works great!

An example of a value type 
would be a type associated with 
a concrete class (one with all its 

methods implemented).

An example of a reference type would be a 
type associated with an abstract class 

(missing some method implementations).

We can only use the 
type to define 

pointers/object 
references!
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Type Equivalence
Type equivalence is the criteria by which a programming language 

determines whether two values or variables are of equivalent types.

There are two approaches:

Name Equivalence

Two values/variables are of equivalent types 
only if their type names are identical.

// C++: name equivalence
struct S { string a; int b; };
struct T { string a; int b; };

int main() {
S s1, s2;
T t1, t2;
s1 = s2; // this works! 
s1 = t1; // type mismatch error!

}

Structural Equivalence

Two values/variables are of equivalent types 
if their structures are identical, regardless of 

their type names.

// typescript: structural equiv.
type S = { a: string; b: number };
type T = { a: string; b: number };

function main() {
let s1, s2 : S;
let t1, t2 : T;
s1 = s2; // this works!
s1 = t1; // this works too!

}

So under structural 
equivalence, these are 

considered equivalent types 
and this would be allowed.

Types S and T are 
structurally identical!

Again, types S and 
T are structurally 

identical!

But they're not 
considered the same 

type under name 
equivalence, so this 
would be an error.
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Type Equivalence
Type equivalence is the criteria by which a programming language 

determines whether two values or variables are of equivalent types.

There are two approaches:

Name Equivalence

Two values/variables are of equivalent types 
only if their type names are identical.

Structural Equivalence

Two values/variables are of equivalent types 
if their structures are identical, regardless of 

their type names.

Most statically typed languages (C++, Java, ...) use name equivalence, while most 
dynamically typed languages (Python, JavaScript) leverage structural equivalence.

As we go through the various typing systems, look out for the two approaches!
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Type Checking

Let's discuss how languages implement type checking!

And learn the pros and cons of each approach.
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Type Checking Approaches

S
tr

ic
tn

es
s

S
tr

o
n

g
W

ea
k

Compile-time vs. Run-time

DynamicStatic

Static typing

Prior to execution, 
the type checker 
determines the type 
of every expression 
and ensures all 
operations are 
compatible with the 
types of their 
operands

Dynamic typing

As the program 
executes, the type 
checker ensures 
that each primitive 
operation is invoked 
with values of the 
right types, and 
raises an exception 
otherwise

Mobile User



Type Checking Approaches
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Compile-time vs. Run-time

DynamicStatic

Static typing

Prior to execution, 
the type checker 
determines the type 
of every expression 
and ensures all 
operations are 
compatible with the 
types of their 
operands

Dynamic typing

As the program 
executes, the type 
checker ensures 
that each primitive 
operation is invoked 
with values of the 
right types, and 
raises an exception 
otherwise

Strong type checking

The language's type system guarantees 
that all operations are only invoked on 
objects/values of appropriate types 

Weak type checking

The language's type system does NOT 
guarantee that all operations are invoked 
on objects/values of appropriate types 
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Compile-time vs. Run-time

DynamicStatic

Assembly 
language, C, C++

NONE that I can 
find! ☺

C#, Go, Haskell, 
Java, Scala

Javascript, Perl, 
PHP, Ruby, 

Python, 
Smalltalk

Type Checking Approaches

Compile-time vs. Run-time

DynamicStatic DynamicStatic

Static typing

Prior to execution, 
the type checker 
determines the type 
of every expression 
and ensures all 
operations are 
compatible with the 
types of their 
operands
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What is Static Typing?

With static typing, a type checker checks that all operations are consistent with the 
types of the operands being operated on prior to the program's execution.

If the type checker can't assign distinct types to all variables, functions and 
expressions and verify type compatibility, then it generates a compiler error.

But if the program type checks, it means the code is (largely) type-safe and few if 
any checks need to be done at runtime.

// C++ - explicit types: a, b, and add()
int add(int a, int b) { return a + b; }

-- Haskell - inferred numeric types  
abs a = if a > 0 then a else (-a)

e.g., the type checker verifies that a
and b's types are both compatible 
with the + operator and with each 

other.

It can also verify that the type of 
expression a+b is the same as the return 

type of the function.

Even though a has no explicit 
type, Haskell can infer that it must 

be a numeric type since we're 
comparing against 0.

The type checker also makes 
sure this expression (a > 0) is 

of the Boolean type as 
required by the if-expression.

The type checker also 
makes sure the type of 

this returned value...

Is the same as the type of 
this returned value!

Mobile User



A Precondition for Static Typing?

To support static typing, a language must have a fixed type 
bound to each variable at its time of definition. 

Consider C++ (statically typed) and Python (dynamically typed):

// C++
void foo(bool b) {
double d;
if (b)
d = 10.0;

else
d = 20.0;   

cout << sqrt(d);
}

Once a variable's type is assigned, it can't be changed.

The type of 
variable d is fixed 
and can't change.

# Python
def foo(b):
if b:
d = 10
else: 
d = "cats"

print(sqrt(d))

Since variable d has 
no fixed type, it could 

refer to anything.

So the compiler can be 
sure that sqrt will 

always be given a value 
of the right type -

before the program 
even runs!

So there's no way to verify 
that sqrt will be passed a 

value of the right type 
without running the code!
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Type Inference with Static Typing

Must types be explicitly annotated for static typing?

No! Types can often be inferred!

void foo(int x, string y) { 
cout << x + 10;
cout << y + " is a string!";

}

Consider the following program - if we omitted the parameter types, could a 
compiler infer the types of x and y?

_______ _______

Languages like Haskell, Go, and now even C++ offer some form of 
type inference, yet are all statically typed!

Of course, it's 
never so simple!

void bar() {
double d = 3.14;
foo(d,"barf");

}

So type inference is 
actually a complex 

"constraint satisfaction" 
programming problem! 
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Type Inference: A Few Examples

// C++ type inference with auto
int main() {

auto x = 3.14159;
vector<int> v;
...

for (auto item: v) {
cout << item << endl;

}

auto it = v.begin();
while(it != v.end()) {
cout << *it << endl;
++it;

}
}

The auto keyword can be used 
to infer the variable's type from 
the right-hand-side expression. // GoLang type inference

func main() {
msg := "I like languages";
n := 5
for i := n; i > 0; i-- {
fmt.Println(msg);

}
}

When using :=, Go infers the 
type of variables from the right-

hand-side expression! 

// Java type inference
public class MyClass {

public static void main(String args[]) {
int x=10, y=25;

var s = "abc";
var sum = x + y;

}
}

If you use the var keyword, Java 
also infers the type of variables! 

Wow – that simplifies things! It'd otherwise be:

std::vector<int>::iterator it =  v.begin();

item will be 
inferred to be int.
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In Static  Typing, Is There Ever a Need to Check Types at Runtime?

For example, when we down-cast!

Yes!  Even in statically-typed languages, 
sometype checking must be done at runtime!

int main() {
Doctor d("Dr. Fauci");
partay(d);

}

class Person { ... };
class Student : public Person { ... };
class Doctor : public Person { ... };

void partay(Person &p) { 
// assumes only students go to parties
Student &s = dynamic_cast<Student &>(p);
s.getDrunkAtParty();

}

If not, the runtime 
type checker throws 

an exception.

At the instant this 
downcast happens, C++ 
knows it's operating on 

a Person... but it doesn't 
know what type of 

person.

So C++ checks in real-time 
whether the object passed in is 
compatible with the downcast 

(is this Person really a 
Student?).

error: invalid 
downcast from 

Doctor to Student

This is a downcast �� it says: 
"I want to treat our p variable 

as if it refers to a Student
object."
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int main() {
Dog d("Spot") ;
Cat c(" Meowmer") ;
handlePet ( d);
handlePet ( c);

}

Static Type Checking is Conservative

Static type checking can prevent technically 
correct programs from compiling!

class Mammal {
public:
string name() const { return name_; }
virtual void makeNoise() { cout << "Breathe \ n"; }

};
class Dog: public Mammal {
public:
void makeNoise() override { cout << "Ruff \ n"; }
void bite() { cout << "Chomp\ n"; }

};
class Cat: public Mammal {
public:
void makeNoise() override { cout << "Meow! \ n"; }
void scratch() { cout << "Scrape! \ n"; }

};

void handlePet ( Mammal& m) {
m. makeNoise();
if ( m.name() == "Spot" )

m. bite ();
else ( m.name() == " Meowmer" )

m. scratch ();
}

Why? Because to guarantee type safety the 
type checker must be overly conservative.

Consider this program which only asks 
Dogs to bite and Cats to scratch...

error: no member 
named 'bite' in 

'Mammal'

error: no member 
named scratch' in 

'Mammal'

This code will only 
ask Dogs to bite.

And only ask 
Cats to 
scratch!

But it won't pass type checking because 
Mammals have no bite() and scratch() methods!
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Static Type Checking Pros and Cons

Produces 
faster code

(fewer type checks 
at runtime, 

optimizations 
possible)

Detects bugs 
earlier in 

development

N0 need to 
write custom 
code to check 

types

Its name Its name Its name

What are the pros of static type checking?

What are the cons of static type checking?

Static type 
checking is 

conservative and 
may error-out on 

perfectly valid 
code

Its name

Static typing 
requires a type 
checking phase 

before execution, 
which can slow 
development

Its name
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Static Type Checking Pros and Cons

Produces faster 
code

(fewer type checks at 
runtime, optimizations 

possible)

Detects bugs 
earlier in 

development

N0 need to write 
custom code to 

check types

What are the pros of static type checking?

What are the cons of static type checking?

Static type checking 
is conservative and 
may error-out on 

perfectly valid code

Static typing requires 
a type checking phase 

before execution, 
which can slow 
development
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Compile-time vs. Run-time

DynamicStatic

Assembly 
Language, C, 

C++

C#, Go, Haskell, 
Java, Scala

Javascript, Perl, 
PHP, Ruby, 

Python, 
Smalltalk

Type Checking Approaches

Compile-time vs. Run-time

DynamicStatic DynamicStatic

Dynamic typing

As the program 
executes, the type 
checker ensures 
that each primitive 
operation is invoked 
with values of the 
right types, and 
raises an exception 
otherwise
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Dynamic Typing

In a dynamically-typed language, the safety of operations on variables/values 
is checked as the program runs rather than at compile time.

If the code attempts an illegal operation on a value, an 
exception is generated or the program crashes.

def add(x,y):
print(x + y)

def foo():
a = 10
b = "cooties"
add(a,b)

TypeError: unsupported operand 
type(s) for +: 'int' and 'str'

def do_something(x):
x.quack()

def main():
a = Lion("Leo")
do_something(a)

AttributeError: 'Lion' object has no 
attribute 'quack'
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Dynamic Typing: Origin Story

Dynamic type checking was pioneered in the LISP language back in 1958.

For flexibility, John McCarthy designed LISP so that variables
weren't required to have a fixed type, e.g.

But he had a problem - the static type checking 
approach only works when variables have fixed types.

So he needed a different kind of type checking.

(setq x 1)
(if (== some_condition True) 

(setq y 6) 
(setq y "hi"))

(add x y) There's no way a compiler can 
determine if both operands are 

compatible!

Why? Their types depend upon 
run-time conditions which aren't 

predictable at compile time!
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Dynamic Typing: Types Associated with Values!

def main():
var = 173
var = "CS131"
var = Dog("Koda", 5)

As with LISP, in today's dynamically-typed languages, we typically 
don't assign fixed types to variables.

For example, 
Python variables 
don't have fixed 

types!

Because of this, we say that in dynamically typed languages:
"types are associated with values and not variables"

var 173

"CS131"

name
bark

" Koda"

5

Moral: Types are 
associated with values.

NOT variables!

A variable can refer to 
values of different types

over time!



How is Dynamic Type Checking Performed?

If variables don't have types, how can a dynamically-
typed language perform type checking at runtime?



How is Dynamic Type Checking Performed?

If variablesdon't have types, how can a dynamically-
typed language perform type checking at runtime?

def add(x,y):
print(x + y)

def foo():
a = 10
b = "nerd"
add(a,b)

a 10int

b "nerd"string

x

y

TypeError: unsupported operand 
type(s) for +: 'int' and 'str'

This is a type tag �� it's 
secretly stored along with 

the value.

Answer: The compiler/interpreter stores type information (called a type tag) along 
with every value/object! 

This type information is used to check all operations!

When an operation occurs, the  
interpreter can check the type tag(s) 
to ensure the values are compatible.
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Dynamic Typing: A Few Examples

-- Lua language
function print_n (v, n)

for i = 1, n do
if type(v) == "string" then
print('"' .. v .. '"')

else
print(value)

end
end

end

print_n("Hello", 3)
print_n(42, 2)

# Julia language
function print_n (v, n:: Int )

for i in 1:n
if isa (v, String )

println ( " \ " $v\ "" )
else

println (v)
end

end
end

print_n ( "Hello" , 3)
print_n ( 42, 2)

# Ruby Language
def print_n (value, n)
n.times do

if value.is_a?(String)
puts "\"#{value}\""

else
puts value

end
end

end

print_n("Hello", 3)
print_n(42, 2)

Here's a function that prints out value v a total of n times, with strings in quotes:
#1: This is called type 

introspection. It can be 
used by a function to... 

#4: This is called a type annotation. 
It tells the program that only ints can be passed 
to the second parameter. But nothing prevents 

you from changing n's value later, e.g.:  n = "ha!"

#2: determine the 
type of a value...

#3: referred to by 
a variable!



def quack_please(x):
x.quack()

p = PersonInDuckSuit()
d = Duck()
v = Vehicle()
quack_please(p)
quack_please(d)
quack_please(v)

Let's Quack!class PersonInDuckSuit:
... 
def quack(self):
print('Hi! Uh... I mean quack.')

class Duck:
... 
def quack(self):
print('Quack quack quack!')

class Vehicle:
... 
def drive(self):
print('Vrooooom!')

What does this 
program print?

Consider the following three classes 
and the code below which uses them.



def quack_please(x):
x.quack()

p = PersonInDuckSuit()
d = Duck()
v = Vehicle()
quack_please(p)
quack_please(d)
quack_please(v)

Let's Quack!class PersonInDuckSuit:
... 
def quack(self):
print('Hi! Uh... I mean quack.')

class Duck:
... 
def quack(self):
print('Quack quack quack!')

class Vehicle:
... 
def drive(self):
print('Vrooooom!')

What does this 
program print?

Consider the following three classes 
and the code below which uses them.

Hi! Uh... I mean quack.
Quack quack quack!
AttributeError: 'Vehicle'
object has no attribute 'quack'

#1: Since variable x 
could refer to 

virtually any type of 
object/value...

#2: at the moment of 
execution, the type checker 

verifies that the target object 
has a quack() method...

#3: and if it does, it 
calls it!

#4: and if not, 
it generates a 
runtime error.

Neat! As long as an object has a quack method, 
the quack_please function just works with it!

And notice, our classes are totally 
unrelated (i.e., no inheritance)!
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# ruby duck typing

class Duck
def quack
puts "Quack, quack"

end
end

class Dog
def quack
puts "Woof... I mean quack!"

end
end

animals = [Duck.new,Dog.new]
animals.each do |animal|
animal.quack()
end

Duck Typing in Other Languages

Ruby, which is dynamically typed, 
also offers duck typing. Let's see!

// JavaScript duck typing
var cyrile_the_duck = {  

swim: function () 
{ console.log("Paddle paddle!"); },  

color: "brown"  
};

var michael_phelps = {  
swim: function () 

{ console.log("Back stroke!"); },  
outfit: "Speedos"  

};  

function process(who) {  
who.swim();  

}  

process(cyrile_the_duck);  // Paddle paddle!
process(michael_phelps);   // Back stroke!

And here's an example from 
JavaScript!

Academic Robot Says:

“I'd argue that Duck 
Typing is a form of 
structural typing!

Prove me wrong!"



Duck Typing: Cool Uses from Python

If you add __iter__ and __next__ methods to 
any class, you can make it "iterable!"

# Python duck typing for iteration
class Cubes:

def __ init __(self, lower , upper ):
self.upper = upper
self.n = lower

def __iter __(self):
return self

def __next__ (self):
if self.n < self.upper :

s = self.n ** 3
self.n += 1
return s

else:
raise StopIteration

for i in Cubes( 1, 4) :
print( i )             # prints 1, 8, 27

Supporting Enumeration

If you add the __str__ method to any class, 
you can make it "printable!"

Making any Class Printable

# Python duck typing for printing objects
class Duck:
def __ init __(self, name, feathers):
self.name = name
self.feathers = feathers

def __str__ (self):
return self.name + " with " + \

str( self.feathers ) + " feathers."

d = Duck("Daffy", 3)
print (d)

Testing for Equality of Value

# Python duck typing for equality
class Duck:
def __ init __(self, name, feathers):
self.name = name
self.feathers = feathers

def __eq__(self, other):
return (

self.name == other.name and
self.feathers == other.feathers

)

duck1 = Duck("Carey",19)
duck2 = Duck("Carey",19)

if duck1 == duck2:
print("Those are the same duck!")

If you add the __eq__ method to any class, 
you can make its objects "comparable!"
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Dynamic Type Checking Pros and Cons

Increased 
flexibility

Duck typing 
enables functions 

that operate on 
many different 

data types

Simpler code 
due to fewer 

type 
annotations

Its name Its name Its name

We detect 
errors much 

later

Code runs 
slower due to 
run-time type 

checking

Requires more 
testing for the 
same level of 

assurance

Its name Its name Its name

What are the pros of dynamic type checking?

Makes for 
faster 

prototyping

Its name

No way to guarantee 
safety across all 

possible executions 
(like Static can give us)

Its name

What are the cons of dynamic type checking?
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A Hybrid Type Checking Approach: Gradual Typing

Static typing

Prior to execution, 
the type checker 
determines the type 
of every expression 
and ensures all 
operations are 
compatible with the 
types of their 
operands

We've just learned the differences 
between static and dynamic typing.

There's actually a less well-known 
hybrid approach also worth briefly 

discussing: gradual typing

Dynamic typing

As the program 
executes, the type 
checker ensures 
that each primitive 
operation is invoked 
with values of the 
right types, and 
raises an exception 
otherwise

Gradual typing

Some variables may 
be given explicit 
types, others may 
be left untyped.

Type checking 
occurs partly before 
execution and partly 
during runtime.

Languages like PHP and TypeScript
use it – so it's worth a quick discussion!
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But if you do specify a type, then some type 
errors can be detected at compile time!

Gradual Typing

With gradual typing, you can choose whether 
to specify a type for variables/parameters.

If a variable is untyped, then type errors 
for that variable are detected at runtime!

def square(x):
return x * x

result = square("foo")

x has no type

def square(x : int):
return x * x

result = square("foo")

x has a type

OK, but what happens if we pass an 
untyped variable to a typed variable?

Challenge: Will a gradually typed 
language allow this? Why or why not?

def square(x : int):
return x * x

def what_happens(y):
print(square(y))We pass an 

untyped variable y

to a typed 
parameter
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But if you do specify a type, then some type 
errors can be detected at compile time!

Gradual Typing

With gradual typing, you can choose whether 
to specify a type for variables/parameters.

If a variable is untyped, then type errors 
for that variable are detected at runtime!

def square(x):
return x * x

result = square("foo")

x has no type

def square(x : int):
return x * x

result = square("foo")

x has a type

OK, but what happens if we pass an 
untyped variable to a typed variable?

Challenge: Will a gradually typed 
language allow this? Why or why not?Answer: You may pass an untyped variable or 

expression to a typed variable and it'll compile fine!

Since you could pass an invalid type, the program 
will check for errors at runtime!

def square(x : int):
return x * x

def what_happens(y):
print(square(y))We pass an 

untyped variable y

to a typed 
parameter
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Is this language statically, 
dynamically, or gradually typed?

fun greet(name: String) {
print("Hello, $name!") 

}

fun main() {
var n = "Graciela";
greet(n);

n = 10; 
}

Compiler: The integer literal does not 
conform to the expected type String

Classify That Language: Type Checking

The following program generates 
a single compilation error.

Ok, let's test our understanding of static, dynamic and gradual typing!

Answer:
A variable can't be assigned to a value of a new type. So n's type is fixed as a 
String -this is Static Typing! That means that n has a fixed type –thus, this 
language must use type inference! This is Kotlin!
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Compile-time vs. Run-time

DynamicStatic

Assembly 
Language, C, 

C++

C#, Go, Haskell, 
Java, Scala

Javascript, Perl, 
PHP, Ruby, 

Python, 
Smalltalk

Type Checking Approaches

Compile-time vs. Run-time

DynamicStatic DynamicStatic

Strong type checking

The language's type system guarantees 
that all operations are only invoked on 
objects/values of appropriate types 
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What is a Strongly-typed Language?

A strongly-typed language ensures that we will NEVER have undefined behavior 
at run time due to type-related issues.

The Language is Type-safe

The language is type-safe, meaning that it 
will prevent an operation on a variable X if 

X's type doesn't support that operation

The Language is Memory Safe

A memory-safe language prevents 
inappropriate memory accesses (e.g., out-

of-bound array accesses, access to a 
dangling pointer) 

These can be enforced statically or dynamically.

In a strongly-typed language , there is no possibility of an unchecked runtime type error.

int a;
Dog d;
a = 5 * d; // Prevented!

int arr[5], *ptr;
cout << arr[10]; // Prevented!
cout << *ptr;    // Prevented!

These are the minimum requirements to be strongly typed:
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Things We Expect in a Strongly Typed Language

Here are some of the techniques that languages use to implement strong typing:

Before an expression is evaluated, the compiler/interpreter validates that all of 
the operands used in the expression have compatible types.

All conversions/casts between different types are checked and if the types are 
incompatible, then an exception will be generated.

Pointers are either set to null or assigned to point at a valid object at creation.

Accesses to arrays are bounds checked; pointer arithmetic is bounds-checked.

The language ensures objects can't be used after they are destroyed.

General principle: Prevent operations on incompatible types or invalid memory.

Dog *x 
print(x)  // NULL!

y = Dog("Koda")
x = 5 + y

y = Dog("Koda")
x = (int)y

int x[5]
print(x[100])

delete d;
d->bark();
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Memory Safety and Strong Typing?

// C++ 
int arr[3] = {10,20,30};
float salary = 120000.50;

cout << arr[3];

Challenge: Why must a language be memory-safe 
to be considered strongly-typed?

Here's a hint.
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RAM/The Stack

Memory Safety and Strong Typing?

// C++ 
int arr[3] = {10,20,30};
float salary = 120000.50;

cout << arr[3];

Challenge: Why must a language be memory-safe 
to be considered strongly-typed?

Here's a hint.

Answer: If a language is not memory safe, you might access a value (like salary) 
using the wrong type (int instead of float)!

arr

20

10

30

[0]
[1]
[2]

125000.50salary arr[3]
This accesses the 

salary variable as if 
it were an integer!

Here's another 
example!

But it's a floating 
point variable!

// Answer: Accessing a dangling pointer!
float *ptr = new float[100];
delete [] ptr;
cout << ptr[0]; // is that still a float?!
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Strongly Typed Languages: Checked Cats

A checked cast is a type-cast that results in an exception/error if the cast is illegal!

// Strongly-typed Java has "checked" casts
public void petAnimal(Animal a) {

a.pet(); // Pet the animal

Dog d = (Dog)a; // Probably a dog, right?
d.wagTail();    // It'll wag its tail!

}

...

public void takeCareOfCats() {
Cat c = new Cat("Meowmer");
petAnimal(c);

}

// Unlike C++'s "unchecked" casts
void petAnimal(Animal *a) {

a->pet(); // Pet the animal

Dog* d = (Dog *)a;  
d->wagTail();

}

...

void takeCareOfCats() {
Cat c("Meowmer");
petAnimal(&c);

}

#2: This code runs even 
though were dealing 
with a Cat, not a Dog!

#3: At this point, 
anything could 

happen!

Casts

#1: Strongly-typed Java 
ensures we never 
succeed with an 

incomptible cast!

java.lang.ClassCastException: class 
Cat cannot be cast to class Dog
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Why Should We Prefer Strongly Typed Languages?

Dramatically-reduced software 
vulnerabilities (less hacking)

Earlier detection and fixing of 
bugs/errors

Its name Its name

So Why Do People Still Use Weakly Typed Languages?

Performance and legacy.
Its name



Why Should We Prefer Strongly Typed Languages?

Dramatically-reduced software 
vulnerabilities (less hacking)

Earlier detection and fixing of 
bugs/errors

So Why Do People Still Use Weakly Typed Languages?

Performance and legacy.
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The Definition of Strong Typing is Strongly Disputed ☺

Many academics argue for a broader definition of strong typing, e.g.:

All conversions between different types must be explicit

The language has to have explicit type annotations for each variable

The type of each variable can be determined at compilation time

And some strongly-typed languages even have these features. 

etc...

But while these items may make a language's type system stricter, they 
ultimately don't impact the language's type safety or its memory safety.

So we won't use them for our definition.
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Compile-time vs. Run-time

DynamicStatic

Assembly 
Language, C, 

C++

C#, Go, Haskell, 
Java, Scala

Javascript, Perl, 
PHP, Ruby, 

Python, 
Smalltalk

Type Checking Approaches

Compile-time vs. Run-time

DynamicStatic DynamicStatic

Weak type checking

The language's type system does NOT 
guarantee that all operations are invoked 
on objects/values of appropriate types 
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What is a Weakly Typed Language?

Here are some attributes associated with weakly-typed languages: 

They are not Type-safe

The language may not detect or prevent 
operations on data types that don't support 

those operations

They are not Memory Safe

Programs may access memory outside of 
array bounds or via dangling pointers

int arr[3];
cout << arr[9];

int *ptr;
cout << *ptr;

Lion leo;
leo.quack(); // ???
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Weak Typing and Undefined Behavior

// C++ int → Nerd example w/undefined behavior!
class Nerd {
public:

Nerd(string name, int IQ) { ...}
int get_iq() { return iq_; }
...

};

int main() {
int a = 10;
Nerd *n = reinterpret_cast<Nerd *>(&a);
cout << n->get_iq(); // ?? What happens?!?!?

}

In a strongly typed language, we know that all operations on variables will either succeed or 
generate an explicit type exception at runtime (in dynamically-typed languages).

But in weakly-typed languages, we can have undefined behavior at runtime!

This reinterprets our 
integer as if it were a 

Nerd object!
Then tries to call the 
get_iq() method... of 

course it crashes!
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Is this language likely 
strongly or weakly typed?

Classify That Language: Type Checking

# Defines a function called ComputeSum
# In this language, @_ is an array that holds
# all arguments passed to the function

sub ComputeSum {
$sum = 0;

foreach $item (@_) {    # loop thru args
$sum += $item;

}

print("Sum of inputs: $sum\n")
}

# Function call
ComputeSum(10, "90", "cat");

We've run this code a million 
times, and each time it prints:

Sum of inputs: 100

Answer:
It appears that the language is converting strings to ints, and it looks like a string 
without digits is treated as zero. It might seem like this would be an example of 
weak typing... But we have no undefined behavior or unchecked type errors! 
This is Perl!
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Classify That Language: Type Checking

fun processArgBasedOnType(x: Any) {
when (x) {
is Int -> print(x)
is String -> print(x.length)
is IntArray -> print(x.sum())
else -> print((x as Dog).bark())  

}
}

fun main() {
var x = Person("Carey","Nachenflopper");
processArgBasedOnType(x)   

}

Is this language strongly
or weakly typed?

Run-time: class Person 
cannot be cast to class Dog

Consider the following program which 
generates a runtime error:

From this code, is it possible to 
determine if this language is 

statically or dynamically typed?
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Classify That Language: Type Checking

fun processArgBedOnType(x: Any) {
when (x) {
is Int -> print(x)
is String -> print(x.length)
is IntArray -> print(x.sum())
else -> print((x as Dog).bark())  

}
}

fun main() {
var x = Person("Carey","Nachenflopper");
processArgBasedOnType(x)   

}

Is this language strongly
or weakly typed?

Run-time: class Person 
cannot be cast to class Dog

Consider the following program which 
generates a runtime error:The language is 

preventing invalid 
casting (at runtime): 

strongly-typed!

From this code, is it possible to 
determine if this language is 

statically or dynamically typed?

Answer:
Yep! We can tell it's strongly typed and statically typed! We know it's strongly typed 
because it prevents in invalid cast at runtime. The clue for static typing is here:
(x asDog).bark(). This castwould not be needed in a dynamically-typed language!
This is Kotlin!

#1: In this language, the 
"Any" type is a supertype

of all other types. 

#2: Every other type is 
compatible with it – so we 

can pass in a Person, an 
Int, a Dog, etc.
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Static vs Dynamic, Strong vs Weak? What's Best?

The trend – in industry – is toward more strongly-typed languages with static type checking.

Facebook has developed Hack, a strongly and statically 
typed version of PHP (for backend web apps)

Facebook has developed Flow, a static type 
checker for JavaScript

Microsoft has developed TypeScript, a strongly and 
gradually typed version of JavaScript.

In fact, just about the only weakly typed languages left are C and C++.
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Language Of  The Week: LUA-- factorial.lua source file
function factorial(n)
local result = 1
while n > 1 do
result = result * n
n = n - 1

end
return result

end

History

Lua was created in 1993 by three members of the 
Computer Graphics Technology Group at the Pontifical 

Catholic University of Rio de Janeiro.

Unique Aspects

You can give your users the ability to customize your 

app by writing their own Lua scripts – e.g. in World of 
Warcraft, to automate in-game actions for the user.

Overview

Lua is an interpreted language that comes as a 
library that can be integrated into other 

applications to let you add scripting to them.

Impact

Lua is used across diverse systems such 
as embedded platforms, antivirus 

engines, databases (e.g., Redis) , etc.

int call_fact() {  // C++ function calls Lua
lua_State* L = luaL_newstate();  
luaL_dofile(L, "factorial.lua");  

lua_getglobal(L, "factorial");  
lua_pushnumber(L, 5);  // compute 5!
lua_pcall(L, 1, 1, 0); 
int fact = lua_tonumber(L, -1);  
...
cout << “5! is “ << fact;

}

Here we initialize the 
Lua interpreter and 

load our .lua source file.Here we ask Lua to find 
our factorial function 

inside of the script.

Here we push the 
argument(s) to the 

function on the Lua stack.

This causes the Lua 
interprter to run the 

factorial function!

This retrieves the result of 
the factorial function off 

the stack.
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Type Conversion & Casting

By the end of this section, you should be able to:

Take a new language and figure out the rules it uses to convert between 
different data types.

Understand the implications of its conversion approach so you can properly 
convert between different types in that language.

Mobile User
So in language theory, we say that float is a subtype of double, or alternatively that double is a supertype of float.

More formally, given two types Tsub and Tsuper, we say that Tsub is a subtype of Tsuper if and only if

every element belonging to the set of values of type Tsub is also a member of the set of values of Tsuper.
All operations (eg +, -, *, /) that you can use on a value of type Tsuper must also work properly on a value of type Tsub.
i.e., If I have code designed to operate on a value of type Tsuper, it must also work if I pass in a value of type Tsub.
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Type Conversions and Type Casts 

?
==!=

Type conversion and type casting are used when we want to perform an 
operation on a value of type A, but the operation requires a value of type B, e.g.

we want to pass an int value to a function that accepts a float value

we want to add a long value to a double value in an expression

we want to pass a Student object to a function that accepts a Person object
(assuming Student is derived from Person)

Mobile User
To clear up the discussion from class about the type relations of int with either float or double: int is NOT a subtype of float but int IS a subtype of double since doubles have enough precision to represent all values that int can hold.
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Two Options: Type Conversions and Type Casts

Type Conversion

A conversion takes a value of type A and 
generates a whole new value (occupying new 

storage, with a different bit encoding) of type B.

Type conversions are typically used to convert 
between primitives (e.g. float → int).

Type Casting

A cast takes a value of type A and views it as if it 
were value of type B – no conversion takes place! 

No new value is created!

Type casts are typically used with objects.

// Conversion example

int main() {
float pi = 3.141;
cout << (int)pi; 

}

// Casting example
class Person { ... };
class Student: public Person { ... };

int main() {
Student mary;

...
Person &p = (Person&)mary;
cout << "Hi " << p.name();

}

pi 3.14

3// 3

s

The program performs a 
conversion, and generates a 

temporary new value of a 
different type in the process.

10000000100100011

00000000000000011

The converted value occupies 
distinct storage and has a 

different bit representation than 
the original value.

mary Person Parts

name "Mary" age 18

Student Parts

major "CS" GPA 3.4

p
This cast lets us refer to our original 
Student object, but interpret it as if 

it were just a Person.
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Two Options: Type Conversions and Type Casts

Type Conversion

A conversion takes a value of type A and 
generates a whole new value (occupying new 

storage, with a different bit encoding) of type B.

Type conversions are typically used to convert 
between primitives (e.g. float → int).

Type Casting

A cast takes a value of type A and views it as if it 
were value of type B – no conversion takes place! 

No new value is created!

Type casts are typically used with objects.

// Conversion example

int main() {
float pi = 3.141;
cout << (int)pi; 

}

// Casting example
class Person { ... };
class Student: public Person { ... };

int main() {
Student mary;

...
Person &p = (Person&)mary;
cout << "Hi " << p.name();

}

pi 3.14

3// 3

s p
// Another casting example; treat an
// int as if it's an unsigned int!

int main() {
int val = -42;

cout << (unsigned int)val;
// prints 4294967254

}

This refers to our original integer, but 
"interprets" its bits as if they 
represented an unsigned int.
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Casts and Conversions: Three Categories

explicit vs. implicit

widening vs. narrowing

checked vs. unchecked
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Conversions/Casts: Explicit vs. Implicit

Both conversions and casts can be explicit or implicit.

An explicit conversion/explicit cast
requires you to use explicit syntax to 

force the conversion/cast.

An implicit conversion (aka coercion) 
or implicit cast is one which happens 

without explicit syntax.

// Explicit conversion
void foo(int i) { ... }

int main() {
float f = 3.14;
foo((int)f);

}

// Implicit conversion  
void foo(float f) { ... }

int main() {
int i = 42;
foo(i);

}

// Explicit cast
void feed_young(Animal *a) {

if (a->has_fur()) {
((Mammal *)a)->produce_milk();

}
}

Here we implicitly convert 
(aka coerce) the type of our 
integer into a type of float.

Here we use explicit syntax to 
indicate that we want to 

convert our float value to an int.

// Implicit cast
void use_potty(Person *p) { p->poop(); }

int main() {
Nerd *n = new Nerd("paul");
use_potty(n);

}

Most implicit casts are 
"upcasts" - from a 

subclass to a superclass.

Here we implicitly upcast
a Nerd object to a Person.
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Explicit Type Conversions

Let's look at explicit conversions in different languages.

// Explicit C++ conversions
float fpi = 3.14;
int ipi = (int)fpi;               // old way  
int ipi2 = static_cast<int>(fpi); // new way 

# Explicit Python conversions
fpi = 3.14
ipi = int(fpi)

// Explicit Rust conversion
let x = 65 as char;  // x is equal to 'A'
println!("'A' as an unsigned 16-bit int is : {}", x as u16);

Ironically, while this creates a new 
value, and is technically a 

"conversion", C++ calls it a "cast".

-- Explicit JavaScript conversion
fpi = 3.14
ipi = parseInt(fpi) -- converts to int
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Explicit Type Casts

Let's look at explicit casts in different languages.

// Explicit C++ cast
class Person { ... };
class Student: public Person { ... }

void make_em_study(Person *p) {
Student *s = dynamic_cast<Student*>(p);
if (s != nullptr)  

s->study();
}

// Explicit Kotlin cast
open class Person(name: String) { ... }
class Student(name: String, gpa: Double): 

Person(name) { ... }

fun make_em_study(p : Person) {
val s:Student? = p as Student?
if (s != null)    

s.study()
}

// Explicit Java cast
class Person { ... }
class Student extends Person { ... }

...

void make_em_study(Person p) {
// next line throws exception if p doesn't
// refer to a Student object
try {

Student s = (Student)p; 
s.study();

} catch (ClassCastException exception) {
... 

}
}
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Why Do We Have Explicit Conversions and Casts?

When you use an explicit conversion or cast, you're telling the compiler to change 
what would be a compile time error into a runtime check.

class Person { ... }
class Student extends Person { ... }
class Professor extends Person { ... }

class Example 
{
public void do_your_thing(Professor q) {
q.give_a_lecture();

}
public void process_person(Person p) {
if (p.get_name() == "Carey")  
do_your_thing(p);   

}  
...

}

#2: But a statically typed compiler 
can't prove this, and so will 

generate a compiler error for this 
implicit conversion.

#1: The programmer 
might know that this 

code will always work...

// p's name is Carey, so p 
// must refer to a Prof!

java.lang.ClassCastException: class 
Person cannot be cast to class Professor
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Why Do We Have Explicit Conversions and Casts?

class Person { ... }
class Student extends Person { ... }
class Professor extends Person { ... }

class Example 
{
public void do_your_thing(Professor q) {
q.give_a_lecture();

}
public void process_person(Person p) {
if (p.get_name() == "Carey")
do_your_thing(p);   

}  
...

}

class Person { ... }
class Student extends Person { ... }
class Professor extends Person { ... }

class Example 
{
public void do_your_thing(Professor q) {
q.give_a_lecture();

}
public void process_person(Person p) {
if (p.get_name() == "Carey")
do_your_thing((Professor)p);   

}  
...

}

But when we add 
an explicit cast...

class Person { ... }
class Student extends Person { ... }
class Professor extends Person { ... }

class Example 
{
public void do_your_thing(Professor q) {
q.give_a_lecture();

}
public void process_person(Person p) {
if (p.get_name() == "Carey")

do_your_thing((Professor)p);   
}  
public void boneheaded_function() {
Student s = new Student("Carey");
process_person(s);

}
}

So if some 
boneheaded 

coder did this... 

We won't have 
undefined 

behavior here...

Of course, in a strongly typed language, the 
program will still perform a runtime check

before allowing the cast operation!

java.lang.ClassCastException: class 
Student cannot be cast to class Professor

When you use an explicit conversion or cast, you're telling the compiler to change 
what would be a compile time error into a runtime check.

We're telling the compiler:

"I know this conversion/cast looks dangerous, 
but trust me, I know what I'm doing."
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Implicit Conversions: Coercions and Promotions

Most languages have a prioritized set of rules that 
govern implicit conversions (aka coercions) that 

are allowed to occur without warnings/errors. 

C++ Implicit Conversion Rules

If either operand is long double then
Convert the other to long double

Else if either operand is double then
Convert the other to double

Else if either operand is float then
Convert the other to float

Else if either operand is unsigned long int then
Convert the other to unsigned long int

Else if the operands are long int and unsigned int and 
long int can represent unsigned int then

Convert the unsigned int to long int
...

For instance, here are the C/C++ rules for 
coercion during binary operations:

int i = 5;
double d = 3.14;
cout << i + d; // prints 8.14

In this expression, C++ picks the highest 
priority conversion rule that applies...

So C++ converts i to a 
double before the addition 

operation is performed.

In PL lingo, a coercion that converts a narrow type 
into a wider type is called a  type promotion. 

So we say that i is "promoted"
from int to double, since double 

can hold all int values (and more).

int a = 5;
...
if (a) cout << "a is not 0";

In contrast, this is a 
coercion from int to bool –
but not a type promotion.
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Conversions: Widening vs. Narrowing

Conversions can be widening or narrowing.

A widening conversion is one that converts a 
narrower type to a wider type, e.g.:

int→ long, float→ double

A narrowing conversion is one that converts 
from wider type to a narrower type, or 

between two unrelated types.

Since a wider type can represent every value the 
narrower type can, widening conversions are "value-
preserving" - the converted value is always the same.

// Widening conversion: short → int
void foo(int i) { ... }

int main() {
short s = 42;
foo(s);

}

// Narrowing conversion: float → int
void foo(int i) { ... }

int main() {
float f = 3.14;
foo(f);

}

short can represent 
integers between -32768 

to 32767

int can represent integers 
between -2bil to 2bil, which 

incudes all short values!
This is a narrowing 

conversion because float and 
int are unrelated types with 
different ranges of values!

Narrowing conversions are NOT value-preserving, 
meaning the converted/casted value might be

different than the original!
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Organism

Person

Student

Casts: Widening vs. Narrowing

Casts can also be widening (an "upcast") or narrowing (a "downcast").

A widening cast, aka an "upcast", casts a 
subtype variable as its supertype, e.g.:

Student→ Person

A narrowing cast, aka a "downcast", is 
one that casts a supertype variable as 

one of its subtypes, e.g.: Person → Prof

Upcasts are always safe because we know that every 
subtype object (e.g., Student) is guaranteed to have 
all of the properties of the supertype (e.g. Person).

class Person { ... };
class Student: public Person { ... };

int main() {
Student *s = new Student("Tad","CS");

Person *p = static_cast<Person*>(s);

cout << "Hi " << p->get_name();
}

class Person { ... };
class Student: public Person { ... };

void chat_with(Person &p) 
{ cout << "Hi " << p->get_name(); }

int main() {
Student s("Tammy","CS");
chat_with(s);

}

Organism

Person

Student

Downcasts may fail if the actual object is not 
compatible with the downcasted type!

class Person { ... };
class Prof: public Person { ... };

void do_thing(Person *p) {
if (p->get_name() == "Carey") {

Prof *q = dynamic_cast<Prof *>(p);
q->give_lecture(); 

}
else p->talk();

}
Here we upcast a 

Student (subtype)...

Here we downcast a 
variable we're 

currently treating as a 
Person (supertype)...

to a Person (supertype)

to a Prof
(subtype)

Enabling us to use 
the subtype's 

specific methods!

Because they're 
guaranteed to work, 

upcasts may be 
implicit too! 
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Conversions/Casts: Checked or Unchecked

Conversions and Casts can be checked or unchecked.

In a strongly-typed language, every 
conversion/cast with the potential for an 

issue is checked for validity at runtime

In a weakly-typed language, some invalid 
conversions/casts may not be checked

(leading to undefined behavior) 

// Checked conversion (Java)
class Organism { ... }
class Alien extends Organism { ... }
class Dog extends Organism { ... }

...

public void play_time(Organism o) {
Dog d = (Dog)o;
d.play_fetch();

}

...

Alien a = new Alien(...);
play_time(a);

java.lang.ClassCastException: 
class Alien cannot be cast to 
class Dog

// Unchecked conversion (C++)
class Organism { ... }
class Alien: public Organism { ... }
class Dog: public Organism { ... }

void play_time(Organism* o) {
Dog* d = (Dog *)o; 
d->play_fetch();

}

...

Alien *a = new Alien(...);
play_time(a);

// Undefined behavior!

// No error generated!
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The program to the left prints:

Classify That Language: Casting & Conversion

function print(q) { /* ... */ }

y = '5' + 3;
print(y)
y = '5' - 3;
print(y)

print('5' + 3 - 3);

53
2

Question #1: Does this language 
support coercion?

Question #3: Assuming expressions are 
evaluated from left-to-right, what does 

this added last line print?

Question #2: Is this language statically 
or dynamically typed?
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The program to the left prints:

Classify That Language: Casting & Conversion

function print(q) { /* ... */ }

y = '5' + 3;
print(y)
y = '5' - 3;
print(y)

print('5' + 3 - 3);

This is JavaScript!

Q1#: Yes! The language coerces 3 into the 
string '3' when we use the + operator:

'5' + 3→ '5' + '3'→ '53'

53
2

Question #1: Does this language 
support coercion?

Question #3: Assuming expressions are 
evaluated from left-to-right, what does 

this added last line print?

Question #2: Is this language statically 
or dynamically typed?

50
Q1: And... the language coerces '5' into a 

number  5 when we use the - operator:
'5' - 3 → 5 - 3 → 2

Q2: We first assign 
variable y to a string

here...

Finally, if we evaluate from left to right, this:

1. Concatenates '5' and '3' to get '53'
2. Subtracts 3 from 53, to get 50

Thanks to Matthew Wang for inspiring 
this problem!

Q2: and then assign y to a number here...

So this must be a dynamically typed language!
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Types – A Final Thought

Type systems empower you to formalize a 
problem's structure into (user-defined) types. 

This allows the compiler to verify that structure, 
enabling you to write more robust software.
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Scoping

By the end of this section, you should be able to:

Take a new language and understand its approach to variable scoping.

Understand the implications of its scoping approach for the visibility/accessibility 
of variables in your program.

Mobile User
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Scoping
What’s the big picture?

A variable is "in-scope" in a region of a program if it 
can be explicitly accessed by its name in that region.

Every language has scoping rules, which govern the 
visibility of variables and functions within a program.

void foo() {
int x;      
cout << x; // Just fine, x is in foo’s scope!

}

void bar() {
cout << x; // ERROR! x isn’t in bar’s scope!

}

Scoping rules tell us what variables are visible at 
every place in the code, and what to do when 

there are multiple variables of the same name.
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Some Definitions…

Definition

The Scope of a variable is the 
range of a program’s instructions 
where the variable is known

Scope
Definition

We say that a variable is "in-scope" 
if it can be accessed by its name in 
a particular part of a program.

In -scope

"The scope of the x variable is 
the function foo()."

void foo() {
int x;      
cout << x;  

}

"The x variable is in-scope within 
the foo function because it is 
defined at the top of the function."
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hrs
is in 

scope 
here

hrs and 
drinks
are in 

scope here

drinks
is in 

scope 
here

puke
is in 

scope 
here

the study() 
function

is in scope 
here

the party() 
function

is in scope 
here

dinner
is in scope 

here

A Simple C++ Scoping Example
string dinner = "burgers";

void party(int drinks) {
cout << "Partay! w00t";
if (drinks > 2) {
bool puke = true;
cout << "Puked " << dinner;

}
}

void study(int hrs) {
int drinks = 2;
cout << "Study for " << hrs;
party(drinks+1);

}

int main() {
int hrs = 10;
study(hrs-1);

}

#1: Note that this hrs
variable is in-scope only 

in main().

#2: And that this hrs
variable is totally 

different, and in-scope 
only in study().
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The set of in-scope variables and functions
at a particular point in a program is called 

its lexical environment.

Scope changes as a program runs!

Let’s trace through this program and highlight actively 
in-scope variables in green and functions in blue!

string dinner = "burgers";

void party(int drinks) {
cout << "Partay! w00t";
if (drinks > 2) {
bool puke = true;
cout << "Puked " << dinner;

}
}

void study(int hrs) {
int drinks = 2;
cout << "Study for " << hrs;
party(drinks+1);

}

int main() {
int hrs = 10;
study(hrs-1);

}

Once a variable is in 
scope, it can be referred 

to by its name.

Lexical Environment

The environment changes as variables 
come in or go out of scope.

puke true

drinks 3

dinner "burgers"

drinks 2

party()
study()
main()Another way to say that a 

variable is in scope is to say that 
it has an "active binding". "hrs is 
actively bound to storage which 

holds a value of 10. " 
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One More Definition…

Definition

Each variable also has a "lifetime" 
(from its creation to destruction).

Lifetime (aka Extent)

A variable’s lifetime may include 
times when the variable is in 
scope, and times when it is not 
in scope (but still exists and can 
be accessed indirectly).

void study(int how_long) {
while (how_long-- > 0)
cout << "Study!\n";

cout << "Partay!\n";
}

int main() {
int hrs = 10;
study(hrs);
cout << "I studied " << hrs <<

" hours!";
}

#1: The hrs variable has a 
lifetime that lasts from the start 
to the end of main()’s execution.

#2: However, when 
we’re running the 
study() function, 

hrs is not in scope!

#3: But it still exists, and when study() 
returns, it will be back in scope!

def main():
var = "I exist"
...

del var    # no longer exists!
print(var) # error!

Some languages like Python 
allow you to explicitly 

control a variable's lifetime!
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95

Lifetimes... of Values 

Values also have lifetimes – and they're 
often independent of variables!

class Dingleberry:
...

def make_dingle():
d = Dingleberry()
return d

x = make_dingle()
if x.is_clinging():

print("Wipey wipey")

Let's see!

x

d

Dingleberry 
Object

#1: The d variable and the value it 
refers to are both "alive" while in the 

make_dingle() function.

#2: At this point, d's 
lifetime ends.

#3: But when we continue 
running in main(), the value 
d referred to is still alive, but 
now referred to by variable x!

So while a variable's lifetime is 
limited to the execution of the 
function where it's defined...

A value may have a lifetime that 
extends indefinitely.
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Lexical Scoping

Definition

Lexical (aka Static) Scoping

Let’s start by discussing Lexical Scoping, which is by far the 
dominant scoping approach.

Virtually all modern languages use 
Lexical Scoping!

File

Class

Function

Function

{ Code block }

{  { blk } { blk } }

With lexical scoping, we determine all variables 
that are in scope at a position X in our code by 
looking at X’s context first, then looking in 
successively larger enclosing contexts around x.

Why? The scoping rules are intuitive 
for coders, and scope can be computed 

unambiguously at compile time!

All programs are comprised of a series of 
nested contexts: we have files, classes in 
those files, functions in those classes, blocks
in those functions, blocks within blocks, etc.
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Lexical Scoping (C++ Example)

For instance, let’s determine what variables 
are in-scope on this line right here…

string a_secret = "Nerds are sexy!";

class Nerd {
public:
...
void pick_nose(int count) {

int j;
for (j=0 ; j<count ; ++j) 
cout << name << " digs in!\n";

}
private:

string name;
};

Well, within our current function block, we 
have j and count in scope.

And within our enclosing class context, 
we see that the member variable name is 

also in scope!

Finally, when we expand to include our file 
context, we see that the global variable 

a_secret is also in scope!

So, in total, with lexical scoping, on this line 
j, count, name and a_secret are all in scope!

j
count

name

a_secret
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Lexical Scoping (Python Example)

Python does scoping using the "LEGB" rule:
Local, Enclosing, Global, and Built-in. 

Local:
First look in the current code block, function 

body or lambda expression.

Enclosing:
Then (if you have a nested function) look in the 
enclosing function that contains your function.

Global:
Then look at all of the top-level variables and 

functions.

Built-in:
Finally you’re left with built-in python 

keywords, functions, etc.

host = 'cindy'

def party():
guest = 'chen'
def use_hot_tub():
drink = 'white claw'
print(host,'and',guest,'are tubbin')
print('and drinking', drink)

use_hot_tub()

In the local context, we discover drink.

drink

Then in the enclosing context, we 
discover our guest.

guest

Finally in the global context, we 
discover our host.

host
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What types of contexts do we consider for Lexical Scope?

Blocks
A new variable is introduced within 
a block, and its scope is limited to 

that block.

if (drinks > 2) {
int puke = 5;
…

} if drinks > 2:
puke = 5
…

Functions
A local variable or parameter is 

introduced within a function, 
and its scope is limited to that 

function. 

void snore(int n) {
int i = 0; 
while (i++ < n) …

}

Expressions

let y = 5 in y*y

A new variable is introduced as part 
of an expression, and its scope is 

limited to that expression. 

sum([x*x for x in 
range(10)])
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Global 

We can define global variables, 
whose scope is available to all 

functions in the program (or file).

# Global variable!
name = "Carey"

def who_am_i():
print("I am ", name);

Classes/Structs

A class can have member variables, 
whose scope is limited to that class. 

class Dog {
public:

void wash() {…}
…

private:
int num_fleas;

};

What types of contexts do we consider for Lexical Scope?

Namespaces

Some languages have 
namespaces that also provide 

"cleaner" scoping.

namespace CONSTS {
const float PI=3.14;

}

float area(float r) {
return r*r*CONSTS.PI; 

}
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Dynamic Scoping

Definition

Dynamic Scoping

In a language with dynamic scoping, when you 
reference a variable, the program tries to find it 
in the current block and its enclosing blocks...

If the variable can't be found, the program then 
searches the calling function for the variable. If it 
can't be fond there, it checks its calling function, etc.

func foo() {
y++;
print x, y

}

func bar() {
int y = 32;
foo();

}

func bletch() {
int x = -1, y = 5;
foo();

}

func main() {
int x = 1000;
bar();
bletch();

}

1000  33
-1  6

Dynamic Scoping has a few holdovers (Logo, 
Emacs Lisp, Bash), but otherwise is DEAD!
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The following program 
outputs a value of -42

Classify That Language: Scoping

(setq a 100)  # sets a to 100

# prints the value of a
(defun print_value_of_a ()

(print a))

# define local variable a, then
# call print_value_of_a
(let ((a -42))

(print_value_of_a))

What does this imply about the type 
of scoping used by this language? 
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The following program 
outputs a value of -42

Classify That Language: Scoping

(setq a 100)  # sets a to 100

# prints the value of a
(defun print_value_of_a ()

(print a))

# define local variable a, then
# call print_value_of_a
(let ((a -42))

(print_value_of_a))

What does this imply about the type 
of scoping used by this language? 

Answer: 
The value of ais taken from the calling 
function's local variable a, not the lexical scope 
→Dynamic Scoping!This is Emacs Lisp!
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The following program outputs:

Classify That Language: Lifetime

program main
call foo()
call foo()
call foo()

end

subroutine foo()
real :: a = 0
a = a + 10
write(*,*) "a = ", a

end

What does this imply about the 
lifetime of variables in this language?

a =    10.00000000
a =    20.00000000
a =    30.00000000

What common problem-solving 
technique (starts with an "r") can 

we NOT use in this language?
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The following program outputs:

Classify That Language: Lifetime

program main
call foo()
call foo()
call foo()

end

subroutine foo()
real :: a = 0
a = a + 10
write(*,*) "a = ", a

end

What does this imply about the 
lifetime of variables in this language?

Answer:
In this language variables have a lifetime that spans ACROSS distinct calls to the function (aka "static 
vars")! Recursion can't be supported without the ability to have a distinct copy of the local variable in 
each call. This is Fortran 77!

a =    10.00000000
a =    20.00000000
a =    30.00000000

What common problem-solving 
technique (starts with an "r") can 

we NOT use in this language?
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Memory Safety

By the end of this section, you should be able to:

Take a new language and understand how it ensures safe access to 
memory to prevent bugs and hacking attacks.

Take a new language and understand how it reclaims the memory of "dead" 
objects as the program runs.
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Memory Safety
What’s the big picture?

Memory-safe languages prevent memory 
operations that could lead to undefined behaviors.

// Java does out-of-bounds checks on all array accesses
int[] array = new int[20];
int i = 400;
System.out.println(array[i]); // Java throws an exception!

Memory-unsafe languages allow memory operations 
that could lead to undefined behaviors. 

// C++
int arr[3];
cout << arr[9]; // ????!?!

// Uninitialized pointer use
int *ptr;
cout << *ptr; // ???

An inordinate amount of bugs and hacking 
vulnerabilities are due to memory unsafety!
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Memory Unsafe Languages...

int val, *ptr;     // both uninitialized
cout << val;       // could leak info!
*ptr = -10;        // corrupts memory

Allow use of uninitialized variables/pointers

int arr[10], *ptr = arr;
arr[-1] = 42;        // out-of-bound
cout << *(ptr + 100); // pointer arith'c

Allow out-of-bound array indexes and 
unconstrained pointer arithmetic

int v;
Student *s = dynamic_cast<Student *>(&v);
s->study();

Allow casting values to incompatible types

Student *s = new Student("Gerome"); 
delete s;   // student is no longer valid
s->study(); // ???

Allow use of dangling pointers to dead objects
(programmer-controlled object destruction)
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int val, *ptr;     // both uninitialized
cout << val;       // could leak info!
*ptr = -10;        // corrupts memory

Allow use of uninitialized variables/pointers

int arr[10], *ptr = arr;
arr[-1] = 42;        // out-of-bound
cout << *(ptr + 100); // pointer arith'c

Allow out-of-bound array indexes and 
unconstrained pointer arithmetic

int v;
Student *s = dynamic_cast<Student *>(&v);
s->study();

Allow casting values to incompatible types

Student *s = new Student("Gerome"); 
delete s;   // student is no longer valid
s->study(); // ???

Allow use of dangling pointers to dead objects
(programmer-controlled object destruction)

Memory Safe Languages...

Throw exceptions for out-of-bound array indexes;
Disallow pointer arithmetic

Throw an exception or generate a compiler error for 
invalid casts

Throw an exception or generate a compiler error if an 
uninitialized variable/pointer is used;

Hide explicit pointers altogether (e.g., Python)

Prohibit programmer-controlled object destruction
Ensure objects are only destroyed when *all* 

references to them disappear (Garbage Collection)
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Memory Safety and Memory Leaks

Why? Even languages with automated memory management 
(e.g., garbage collection) can sometimes run out of memory!

So based on our criterion for memory safety, we will not 
require a language to prevent memory leaks.

Shouldn't a language be considered 
unsafe if it can have memory leaks?

Well, if our criteria for something to be "unsafe" is that it 
leads to undefined behaviors, then memory leaks don't count!

When this happens, the program is predictably 
terminated – there are no undefined behaviors.
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Strategies for Memory Leaks and Dangling Pointers

Garbage Collection

The language manages 
all memory de-allocation 

automatically

Ownership Model

The compiler ensures 
objects get destroyed 

when their lifetime ends

C#, Go, Java, JavaScript 
Python, Haskell, ...

Rust
C++ (Smart Pointers)

Mobile User



Garbage Collection

Garbage Collection is the automatic reclamation of memory which was 
allocated by a program, but which is no longer referenced.

In a language with garbage collection the programmer does not explicitly 
control object destruction – the language does.

When a value or object on the heap is no longer referred to, the program 
(eventually) detects this at runtime and frees the memory associated with it.

Eliminates Memory 
Leaks

Ensures memory 
allocated for objects is 

freed once it's no longer 
needed

Eliminates Dangling 
Pointers and Use of Dead 

Objects

Prevents access to 
objects after they have 

been de-allocated

Eliminates Manual 
Memory Management

Simplifies code by 
eliminating manual 
deletion of memory

Eliminates Double-free 
Bugs

Eliminates inadvertent 
attempts to free 

memory more than once

Garbage collection was pioneered 
in LISP in the early 60s. 

What are the benefits? Let's see!

Mobile User



When Should Objects be Garbage Collected?

CHALLENGE! What criteria should be used to 
decide when to garbage collect an object?



When Should Objects be Garbage Collected?

public void do_some_work() {
Nerd nerd = new Nerd("Jen");
...

} // nerd goes out of scope

public void do_some_work() {
Nerd nerd = new Nerd("Jen");
...
// we overwrite an obj ref
nerd = new Nerd("Rick");
// or 
nerd = null; 

}

CHALLENGE! What criteria should be used to 
decide when to garbage collect an object?

Answer: A good rule of thumb: Garbage collect an object when 
there are no longer any references to that object.

No locals, no member variables, no globals, etc.
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Garbage Collection Approaches

Mark and Sweep

Discover active objects by doing 
a traversal from all global, local 
and member variables that are 

obj references.

Free all objects that were not 
reached during discovery.

Reference Counting

Each object keeps a count of the 
number of active object 

references that point at it. 

When an object's count reaches 
zero, its memory is reclaimed. 

Go, Java, JavaScript Perl, Python, Swift

Let's talk about three of the main garbage collection approaches!

Mark and Compact

Discover all active objects; move 
'em into a new block of memory.

Throw away everything in the old 
block of memory (which holds 

only dead objects).

C#, Haskell

Bulk garbage collection occurs when free memory runs low – the 
program's execution is frozen temporarily while this happens!

Individual objects are garbage collected 
the moment their count reaches zero.
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Mark and Sweep Garbage Collection

Mark and Sweep runs in two phases:

A Sweep Phase

The algorithm scans all heap memory from 
start to finish, and frees all blocks not marked 

as being 'in-use.'

A Mark Phase

The algorithm identifies all objects that are still 
referred to and thus considered to be in-use.

Mark and Sweep was invented by 
John McCarthy (inventor of LISP) in 1960
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Mark and Sweep: The Mark Phase

It is reachable from a root object

If an object can be transitively reached via 
one or more pointers/references from a root 
object (e.g.,robot object points to battery)

It is one of a key set of root objects

Root objects include global variables, local 
variables across all stack frames, and 

parameters on the call stack

During the mark phase, our goal is to discover all active objects that are still being used. 

We consider an object in-use (and its memory not reclaimable) if it meets one of two criteria:

// Java
public class Game {
public void play(AudioPlayer audio) {
Robot robot = new Robot("Quark");
Alien alien = new Alien();
...
alien = null; 

}

static Hero hero_ = new Hero();
}

The Stack

The Heap

Static Data

Robot object

hero_

Hero 
object

Battery 
object

robot
audio

Audio
Player 
object

nullalien

Alien 
object

By definition, all root 
objects are active and 
therefore should NOT 
be garbage collected.

And if an object is referred 
to by a root object, then it 
must be active too for the 

root object to function. 
And so on!

By definition, all root 
objects are active and 
therefore should NOT 
be garbage collected.
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# Pseudocode for the Mark algorithm
def mark():

roots = get_all_root_objs()
candidates = new Queue()
for each obj_ref in roots:
candidates.enqueue(obj_ref) 

while not candidates.empty():
c = candidates.dequeue()
for r in get_obj_refs_in_object(c):

if not is_marked(r):
mark_as_in_use(r)
candidates.enqueue(r)

During the first part of the mark phase, the garbage collector identifies all root objects 
and adds their object references to a queue* for investigation.

The Stack

The Heap

Static Data

Robot object

hero_

Hero 
object

Battery 
object

robot
audio

Audio
Player 
object

nullalien

During the second part, the garbage collector uses the queue to breadth-first-search 
from the root objects and mark all reachable objects as "in-use."

Each object has a bit (hidden from the 
programmer) which is set by the GC to 

mark that it's still in-use.

When we're done, all 
reachable objects have 

been marked.

All unmarked objects are 
not in use and can be 

disposed of!

How does the GC find 
unmarked variables?

Mark and Sweep: The Mark Phase

Alien 
object
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During the sweep phase, we traverse all memory blocks in the heap 
(each block holds a single object/value/array) and examine each object's in-use flag.

How do we traverse memory blocks?

20
0

 b
yt

es
17

0
0

 b
yt

es

The Heap
size: 200 bytes
prev: nullptr
next: 1220

size: 1700 bytes
prev: 1000
next: 2940

1000

102o

1220

124o

size: 50 bytes
prev: 1220
next: 3010

2940

......

Hero 
object

So to perform the 
sweep phase, we can 

simply follow the links 
from top-to-bottom.

Well, all memory blocks in the heap are linked 
together top-to-bottom in a linked list!

# Pseudocode for the Sweep algorithm
def sweep():

p = pointer_to_first_block_in_heap()
end = end_of_heap()
while p < end:

if is_object_in_block_in_use(p):
reset_in_use(p)      # remove the mark, object lives

else:
free(p)                        # free this block/object

p = p.next

Alien 
object

Our first object was marked 
as in-use, so we can keep it 

and just reset the in-use flag 
for next time.

Mark and Sweep: The Sweep Phase

size: 1750 bytes
prev: 1000
next: 3010

Our second object was 
not marked as in-use, 

so we can free it.

Adjacent free blocks can 
then be coalesced into a 

single large block!

Mobile User



Mark and Sweep can result in memory fragmentation.

Mark and Sweep: Memory Fragmentation

Fragmentation is when the heap becomes peppered with 
small, unused memory blocks where previously-freed 

objects used to be.
???

When this happens, it becomes slow (or impossible) 
to find free chunks of memory big enough to 

accommodate new object allocations.

unused

unused

unused

unused

unused

unused

So how might we deal with this? Let's see!

Mobile User
* Rather than using a queue or stack, the mark and sweep algorithm can use a clever pointer manipulation trick. But logically you can think of this as a breadth-first or depth-first traversal.
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Mark and Compact – A Twist on Mark and Sweep

In Mark and Compact GC, we perform our normal mark phase.

However, once we're done marking, we don't sweep away unmarked objects!

Instead, we compact all marked/in-use objects to a new contiguous block of memory.

Finally, our original block of memory is just treated as if it's empty  
and can be reused as a whole without dealing with any sweeping.

Then we adjust all pointers to the proper relocated-addresses.

We alternate 
compaction back and 

forth between the two 
contiguous blocks.
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Garbage Collection and (Un)Predictability

With GC approaches, it's impossible to predict when (and if) a given object will actually 
be freed by the collector – collection only occurs when there's memory pressure.

Challenge: Why does it matter?
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Garbage Collection and (Un)Predictability

With GC approaches, it's impossible to predict when (and if) a given object will actually 
be freed by the collector – collection only occurs when there's memory pressure.

Challenge: Why does it matter?

Well, what if each object creates a 
large temporary file on the hard drive?

And what if there's plenty of RAM, so the 
collector doesn't run and get rid of unreachable 

objects (and their temp files) often?

You're going to run out of hard-drive space, long before you run out of RAM!

Academic Robot Says:

�´�,�Q���* �& -based languages, 
the programmer really 

needs to free other 
resources (e.g., files) 

manually and assume GC 
won’t happen."
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Reference Counting-based Garbage Collection

In reference counting GC, every object has a hidden count that tracks 
how many references there are to it.

Every time a new reference is created to an object, the 
language secretly increments the count.

Every time a reference to an object disappears, 
the language secretly decrements its count.

If an object's count reaches zero, the object is deleted.

def foo():
x = "I love dogs."

# y.ref_count += 1

# x.ref_count -= 1

y = x

x = None  

# locals go out of scope
# y.ref_count -= 1
# x.ref_count -= 1

A reference count 
is secretly stored 
with each object 

and array.

The language secretly bumps up 
the count every time a new 

reference is created to the object.

The language secretly 
decrements the count every time 

a reference to it goes away.

After: x = "I love dogs." 

After: x = None

After: y = x

y

2
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Reference Counting-based Garbage Collection

When an object is destroyed (its reference count hits ZERO), all objects transitively 
referenced by that object must also have their reference counts decreased!

class Vehicle:
def __init__(self):
self.engine = Engine()
self.brake = Brake()
self.wheel = Steering()
self.blinkers = Blinkers()

def game():
v = Vehicle()
...
v = None

v

Vehicle

ref_cnt 1

engine

brake

wheel
blinkers

...Engine ref_cnt 1

...Brake ref_cnt 1

...Steering ref_cnt 1

...Blinkers ref_cnt 1

When this 
reference count 
goes to zero...

This object goes away... 

Forcing these objects' 
reference counts to zero, 
and requiring them to be 

GCed too!

Challenge: How might we address this 
to speed things up in the average case? 

Because of this, removing a single reference can potentially 
lead to a cascade of objects being freed at once. SLOW! 
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Reference Counting-based Garbage Collection

When an object is destroyed (its reference count hits ZERO), all objects transitively 
referenced by that object must also have their reference counts decreased!

class Vehicle:
def __init__(self):
self.engine = Engine()
self.brake = Brake()
self.wheel = Steering()
self.blinkers = Blinkers()

def game():
v = Vehicle()
...
v = None

v

Vehicle

ref_cnt 1

engine

brake

wheel
blinkers

...Engine ref_cnt 1

...Brake ref_cnt 1

...Steering ref_cnt 1

...Blinkers ref_cnt 1

Challenge: How might we address this 
to speed things up in the average case? 

Because of this, removing a single reference can potentially 
lead to a cascade of objects being freed at once. SLOW! 

Answer: 
Instead of destroying an object as soon as its count 
becomes zero, add it to a list of pending objects, 
and then reclaim memory regularly over time.

Sarcastic Robot Says:

�´�&�D�U�H�\�����\�R�X���G�L�G�Q�
�W���P�H�Q�W�L�R�Q��
that reference counting is also 

�V�X�E�M�H�F�W���W�R���I�U�D�J�P�H�Q�W�D�W�L�R�Q���µ��
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Garbage Collection: Pick the Winners

We have many objects of diverse sizes with frequent allocations and deletions 
– what GC scheme(s) are best suited for my situation?

I am running on a low-RAM device. 
What GC scheme(s) are best suited for this?

1

Hero object
my_enemy

Alien object
my_enemy

ref_count 1

ref_count

I have lots of objects with cyclical references to each other.  
What GC scheme(s) should I avoid?

I am writing a program for a real-time device. 
What GC scheme(s) are best suited for this?

Q: I have many objects of diverse sizes with frequent allocations and deletions –what GC scheme(s) are best suited for my situation?
A: This situation results in lots of memory fragmentation if you use mark and sweep or reference counting. Mark and compact works better since the objects can be aggregated and memory "holes" can be eliminated in between objects.

Q: I have lots of objects with cyclical references to each other.  What GC scheme(s) should I avoid?
A: Avoid reference counting GC, because by definition, two objects that refer to each other will each have reference count of1,meaning that their reference count will never reach zero even if are no longer referred to by any variables in a 
program.  

Q: I am running on a low-RAM device.  What GC scheme(s ) are best suited for this?
Mark and sweep would be best. Mark and compact needs to reserve half the memory for compaction, and reference counting requires extra memory stored with each object to maintain reference counts.

Q: I am writing a program for a real-time device.  What GC scheme(s) are best suited for this?
Reference counting would be best (though still not ideal) since it doesn't freeze the computer while GC occurs. Objects are GCedas they are no longer referred to, generally resulting in incremental GC of objects.  Use of a queue of pending 
objects to free to deal with cascades can help even out the load of GC over time.

One more point: mark and sweep (and to a lesser extent, mark and compact) may cause thrashing with OS paging. Why? Here's an answer from former student Victor Chinnappan:
This most likely has to do with locality. It is true that mark-and-sweep is not the only case where thrashing occurs and it doesn't occur in all cases for mark-and-sweep but let's look at an example.
Imagine storing large amounts of data such that RAM is pretty much full. That would lead to the Garbage Collector having to run.Mark-and-sweep will have to traverse through all the memory blocks in our heap. Now if our heap uses a lot of 
pages and our RAM is not large enough to store all of them, we would have a high page fault rate (paging in and out), hence thrashing.
Note: Fragmentation also makes it worse (less usable blocks and that may be spread apart)
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Garbage Collection Summary

Garbage collection eliminates entire 
classes of common memory safety bugs.

Obviously, garbage collection adds extra storage and performance 
overhead, but with clever engineering this can be minimized.

As such, garbage collection is pretty much a de-facto 
standard in most modern programming languages.

The one area where languages with garbage 
collection are frowned upon is in real-time devices 
that need totally predictable execution behavior. 

In these environments, languages like C and Rust 
are used – both of which don't use GC.
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An 
Alternative 
to GC: The 
Ownership 
Model

Mobile User

Mobile User
Pros:

simple
usually real-time (since reclamation is usually instant)
more efficient usage since blocks are freed immediately
Cons:

updating counts needs to be thread-safe (this is a huge issue!)
updating on every operation could be expensive (both in time and space)
cascading deletions
requires explicit cycle handling
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The Ownership Model

In the ownership model, every object is "owned" by one or more variables in the program.

When the last owner variable's lifetime ends, the object it owns is freed automatically.

s1
String Object:
"I'm owned!!"

s3

s2
String Object:
"I'm owned!!"

In some implementations, ownership can be transferred (aka "moved") to a new variable, 
invalidating the old variable!

var s1 = new String("I'm owned!")

var s2 = s1

print(s1)  // ERROR!

After: var s1 = ...

After: var s2 = s1
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Rust's Ownership Model: Move Semantics

In Rust's ownership model, every object is owned by a single variable in the program.

When that variable's lifetime ends, the object it owns is freed.

In Rust, ownership is transferred to a new variable via assignment or parameter 
passing. After such a transfer, the old owner variable becomes invalid!

// Rust example showing ownership concept

fn main() {
let s1 = String::from("I'm owned!!");

}

let s2 = s1; // Ownership xferred to s2

// s1's lifetime ends, string object freed// s2's lifetime ends, string object freed

fn foo (s3: String) {
println!("{}", s3); 

}

foo(s2);

// s3's lifetime ends, string object freed

// Nothing left to free!

println!("{}", s2); // Compiler error!
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Rust's Ownership Model: Move Semantics

Rust's ownership model also supports "borrowing" where a 
variable may refer to an object without taking ownership.

// Rust example showing borrowing

fn main() {
let s1 = String::from("I'm owned!!");

}

let s2 = s1; // Ownership xferred to s2

The borrower may request exclusive read/write access (for thread safety) 
or non-exclusive read-only access.

fn foo (s3: &String) {
println!("{}", s3); 

}

foo(&s2);

// s2 goes out of scope, string object freed

// s3 goes out of scope, no object freed!

println!("{}", s2); // This is valid!

Sarcastic Robot Says:

�´�-�X�V�W ���D�Q���)�<�,�� - Rust only uses ownership 
to track objects, not primitive values.

And... you can make copies of values, if 
�Q�H�F�H�V�V�D�U�\�����W�R���D�Y�R�L�G���P�R�Y�H���V�H�P�D�Q�W�L�F�V���µ��
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C++'s Ownership Model: Smart Pointers

A smart pointer is a C++ class that works like a traditional pointer 
but also provides automatic memory management.

Each smart pointer is an owner of its assigned 
heap-allocated object, and is responsible for 

freeing it when it's no longer needed.

class SmartPointer {
~SmartPointer() 
{ delete ptr_; }

};

When copies are made of a smart pointer, they 
coordinate and keep track of how many of them 

refer to the same shared resource.

Each smart pointer object holds a traditional pointer 
that refers to a dynamically allocated object or array.

// other fields
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std::unique_ptr

A unique_ptr is a smart pointer that exclusively owns the responsibility for freeing a 
heap-allocated object. When the UP goes out of scope, it frees the object.

#include<memory>  // needed for unique_ptr

#include "nerd.h"

int main() {
std::unique_ptr<Nerd> p = std::make_unique<Nerd>("Carey", 100);

p->study(); // p acts like a regular ptr!

}

// nerd.h
class Nerd {
public:
Nerd(string name, int IQ) { ... }
void study() { ... }

};

// p goes out of scope → frees the Nerd

And when a unique pointer goes 
out of scope, it auto-deletes the 

dynamic object it owns.

std::unique_ptr<Nerd> p2 = p; // ERROR!

You pass in the parameters for 
construction of your object to 

make_unique – it'll automagically 
forward them to your c'tor!

Instead of using the new command, we call 
the make_unique function to dynamically 
allocate RAM and construct a new object.

You can't make copies of a 
unique_pointer – no duplicating it, 

or passing it to other functions!
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std::shared_ptr

A shared_pointer is a smart pointer that shares the responsibility for freeing a 
heap-allocated object. When the last SP goes away, it frees the object.

#include<memory>  // needed for shared_ptr

#include "nerd.h"

std::vector<std::shared_ptr<Nerd>> all_my_nerds;

void keep_track_of_nerd(std::shared_ptr<Nerd> n) {
all_my_nerds.push_back(n);

}

int main() {
std::shared_ptr<Nerd> p = std::make_shared<Nerd>("Carey", 100);
keep_track_of_nerd(p);

} // p goes out of scope

// globals like all_my_nerds are destructed

// n goes out of scope
Here's how we define a 

shared pointer for a Nerd...

When we pass a shared_ptr
by value, it makes another 
copy of the smart pointer!
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Memory 
Safety: What 
Happens 
When 
Objects Die?

Mobile User
This is known as a zero cost abstraction because it guarantees memory cleanup & safety without the additional overhead of a garbage collector at runtime!

Mobile User
An interesting note on Rust’s design philosphy: all variables are immutable by default! We must explicitly declare a variable as mutable in order to modify it. This idea carries over to borrowing. Unless marked as mutable, borrowing creates an immutable reference. This leads to much safer code! One last thing: we can only have one mutable reference to a variable at a time. Try to think about why that might be!
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Memory Safety: What Happens When Objects Die?

Destructor Methods

Destructors are automatically called 
when an object's lifetime ends.

It is guaranteed that a destructor 
will run immediately at this time.

Finalizer Methods

An object's finalizer method is called 
by the garbage collector before it 

frees the object's memory.

Since garbage collection can occur 
at any time (or not at all), you can't 
predict when/if a finalizer will run!

Non-GC languages, e.g.: C++
GC languages, e.g.:

C#, Go, Java, Python

Many objects hold resources (e.g.: dynamic objects, temp files) which 
need to be released when their lifetime ends.

There are three ways this is handled in modern languages.

Manual Disposal Method

The programmer adds a "disposal()" 
method to their class, and updates 

their code to explicitly call it to force 
the disposal of resources.

It's like a manually-invoked 
destructor.

Manual Disposal languages, e.g.:
C#, Java, Swift
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What Happens When Objects Die: Destructors

void doSomeProcessing() {
TempFile *t = new TempFile();

...

if (dont_need_temp_file_anymore()) 
delete t; 

...
}

void otherFunc() {
NetworkConnection n("www.ucla.edu");

...
}

Our object's lifetime is 
deterministic – the programmer 

can control exactly when the 
destructor will run.

There are deterministic rules that govern 
when destructors are run, so the programmer 
can ensure *all* of them will run, and control 

*when* they run.

Since the programmer can control when 
they run, you can use destructors to release 

critical resources at the right times:

Destructors are only used in languages with 
manual memory management, like C++.

Similarly, the destructors for local variables are 
guaranteed to run when the variables' lifetimes 

ends.

e.g., freeing other objects, closing network 
connections, deleting files, etc.
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// Java finalization example
public class SomeClass {

// called by the garbage collector
protected void finalize() throws Throwable
{
// Free unmanaged resources held by SomeObj
...

}
}

Since they can't be counted on to run, they're 
considered a last-line of defense for freeing 

resources, and often not used at all!

Unlike a destructor, a finalizer may not run at a 
predictable time or at all, since objects can be 
garbage collected at any time (or not at all)!

In GC languages, memory is reclaimed 
automatically by the garbage collector.

# Python finalizer method
class SomeClass :
...

# called by the garbage collector
def __del__(self):

# Finalization code goes here
...

What Happens When Objects Die: Finalizers

So finalizers are used to release unmanaged 
resources like file handles or network 

connections, which aren't garbage collected.

We'll learn more about finalizers when we 
cover Object Oriented Programming.

Mobile User



// C# dispose example
public class FontLoader : IDisposable
{
...

public void Dispose()
{

// do manual disposal here, e.g., free
// temp files, close network sockets, etc.

}
}

...

var f = new FontLoader(...);
... // use f to draw fonts
f.Dispose();

A disposal method is a function that the 
programmer must manually call to free non-

memory resources (e.g., network connections)

You use disposal methods in GC languages 
because you can't count on a finalizer to run!

Disposal provides a guaranteed way to 
release unmanaged resources when needed.

What Happens When Objects Die: Disposal Methods

But... If the programmer forgets to 
call Dispose(), it'll never run! 
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A Final Word on C and C++ and Safety

As much as I like C++, it's by far the most memory unsafe language in wide use today!

Allows use of uninitialized variables/pointers

Allows out-of-bound array indexes and unconstrained 
pointer arithmetic

Allows casting variables to incompatible types

Allows use of dangling pointers to dead objects

Is susceptible to memory leaks

C++:
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For some reason, the pers
and apt objects never get 
finalized in this program.

Classify That Language: Memory Safety

class Person {
let name: String
init(name: String) { self.name = name }
var apartment: Apartment?

}

class Apartment {
let unit: String
init(unit: String) { self.unit = unit }
var tenant: Person?

}

var pers:Person? = Person(name: "Dean Boelter")
var apt:Apartment? = Apartment(unit: "11C")
pers!.apartment = apt
apt!.tenant = pers

pers = nil 
apt = nil

What type of GC might this 
language be using:

Mark and Sweep
Mark and Compact
Reference Counting
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For some reason, the pers
and apt objects never get 
finalized in this program.

Classify That Language: Memory Safety

class Person {
let name: String
init(name: String) { self.name = name }
var apartment: Apartment?

}

class Apartment {
let unit: String
init(unit: String) { self.unit = unit }
var tenant: Person?

}

var pers:Person? = Person(name: "Dean Boelter")
var apt:Apartment? = Apartment(unit: "11C")
pers!.apartment = apt
apt!.tenant = pers

pers = nil 
apt = nil

What type of GC might this 
language be using:

Mark and Sweep
Mark and Compact
Reference Counting

This is Swift!

This creates a cycle between the objects 
where they both point at each other.

A Mark and Sweep collector would have 
no problem GCing these objects here... 

So the language must be using
Reference Counting.
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Mutability/Immutability

By the end of this section, you should be able to:

Take a new language and understand what features it has to create 
constant variables and values.

Understand how those features can let you write safer code.
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Mutability/Immutability
What’s the big picture?

Immutability is the property that a 
variable/value/object is read-only, and it can't 
be changed (aka "mutated") once initialized.

Rather than modifying an existing value, when a 
new value is needed, you construct a new object 

with changes, based on the original.

Immutability has many benefits, including 
eliminating may bugs, speeding garbage 

collection, etc!

Immutability is provided by language features, 
not by hardware-level protection!
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Immutability – Four Approaches

Class Immutability
The programmer can designate that all
objects of a class are immutable after 

construction.

def main():  # Python
s = "Hello!"
s[0] = 'J'  # ERROR!

Assignability Immutability
The programmer can designate that a 

variable may not be re-assigned to a new 
value - but mutations can be made to the 

original referred-to object!

public static void someFunc() {
final Nerd n = Nerd("Carey",100);
n = Nerd("Joe,200); // ERROR!
n.setIQ(120);       // OK!!!

}

Reference Immutability
The programmer can prevent a mutable 

object from being mutated via a 
reference that's marked as immutable

void examine(const Nerd& n);

int main() {
Nerd j("Joe",200);
examine(j);

Object Immutability
The programmer can designate some 

objects of a particular class as immutable –
mutations are blocked to those objects!

int main() {
Nerd j("Joe",200); // mutable!
const Nerd n("Carey",100);
n.setIQ(120); // ERROR!

}

CHALLENGE! Which of 
these approaches can be 
implemented with C++'s 

const keyword?

Answer: Object immutability, assignability 
mutability, and reference immutability
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Improved Code QualityFewer Bugs

Why Immutability?

Reduces  
multithreading bugs

If a value can't change, 
you can't have race 

conditions!

Eliminates Aliasing 
Bugs

f(x,x); 
If f() can't modify x, 

then no aliasing bugs!

Eliminates Identity 
Variability Bugs

map[x] = y;
x.change_identity();
cout << map[x]; // ???

Eliminates Temporal 
Coupling Bugs

Circle c = new Circle();
c.setRadius(10);
c.getArea();  // ??

Enables Runtime 
Optimizations

The compiler can make 
assumptions about 

objects that can't change

Enables Easy 
Caching

Objects can be cached 
without concern their 
values have changed

Makes Testing 
Easier

There are far fewer 
failure modes since 
objects are frozen

Ensures Atomicity of Failure

Objects are never left in an 
inconsistent state by definition

Absence of Hidden 
Side Effects

Makes programs 
easier to read and 

reason about

Temporal Coupling Bug:

A bug where the programmer does some initialization out of 
order – or not at all - resulting in use of an incomplete object.



What immutability 
approach(es) are used by the 

following language?

Classify That Language: Immutability
struct Point {

x: isize,
y: isize,

}

impl Point {
fn new(x: isize, y: isize) -> Self {
Self { x, y }

}
fn change(&mut self, x: isize, y: isize) 
{ self.x = x; self.y = y; }

}

fn main() {
let p = Point::new(0, 0);

p.change(10,20);

p = Point::new(1, 2);
}

cannot borrow `p` as mutable

cannot assign twice to 
immutable variable `p`

The following program 
generates two compiler 

errors.



What immutability 
approach(es) are used by the 

following language?

Classify That Language: Immutability
struct Point {

x: isize,
y: isize,

}

impl Point {
fn new(x: isize, y: isize) -> Self {
Self { x, y }

}
fn change(&mut self, x: isize, y: isize) 
{ self.x = x; self.y = y; }

}

fn main() {
let p = Point::new(0, 0);

p.change(10,20);

p = Point::new(1, 2);
}

cannot borrow `p` as mutable

cannot assign twice to 
immutable variable `p`

This is Rust!

This error indicates that the language 
provides Object Immutability.

This error indicates that the language 
provides Assignment Immutability.

In this language, let indicates that 
immutability is to be applied.

The following program 
generates two compiler 

errors.

Mobile User



Mobile User

Mobile User
Mutability
You might remember the concept of immutability from our discussion of functional programming: it’s used to describe objects that are “read only.” In other words, once an immutable object has been defined, it cannot be changed.

Instead, we simply construct a new object based on the original, including any changes we would like to make. There are tons of benefits to immutability including eliminating bugs, speeding up garbage collection, and more! Let’s take a closer look.

There are four approaches to immutability:

Class immutability: The programmer can designate that all objects of a class are immutable after construction.
Object immutability: The programmer can designate some objects of a particular class as immutable –mutations are blocked to those objects!
Assignability immutability: The programmer can designate that a variable may not be re-assigned to a new value - but mutations can be made to the original referred-to object!
Reference immutability: The programmer can prevent a mutable object from being mutated via a reference that’s marked as immutable
There are tons of benefits!

eliminates aliasing bugs
reduces race conditions in multithreaded code
eliminates identity variability bugs
elminates temporal coupling bugs
removes side effects, making programs easier to reason about
makes testing easier
enables runtime optimizations
enables easy caching
objects are never left in an inconsistent state by definition




Data-Function-palooza

+

This section covers Variable Binding Semantics and Parameter Passing - two 
intimately-related topics that bridge both our data and function units.

Mobile User



Variable Binding and Parameter Passing Semantics

By the end of this section, you should be able to:

Take a new language and understand how it associates variable 
names with values and passes parameters to functions!

Understand the implications of each approach to avoid common bugs.



Binding and Parameter Passing Semantics
What’s the big picture?

Binding Semantics is the term we use to describe the different 
ways that languages associate variable names (e.g., x) with the 

actual storage in RAM that holds their values (e.g., 5).

For instance, some languages 
directly associate a variable 

name with its value.

// C++
int main() {

int x = 5;
}

x 5 x 5

# python
def main():

x = 5

Other languages associate a 
variable name with a pointer to 

a value stored elsewhere.

Each approach has implications for how you write code, pass 
variables to functions, and what bugs you run into!



Name/Need Semantics

A variable name is bound
to a pointer that points to 
an expression graph that 
can be evaluated to get a 

value

Variable Binding Semantics

Value Semantics

A variable name is directly
bound to the storage that 

holds the value

Reference Semantics

A variable name is directly 
bound to another 

variable’s storage, like an 
alias

Binding Semantics describe how a variable name is bound to a storage+value.

int main() {
int x = 5;

}

int main() {
int x = 5;
int &r = x;

}

main = do 
let n = 2*10
let x = 5*n+3

x 5 x 5r x 5

Object Reference 
Semantics

A variable name is bound 
to a pointer that points to 

an object/value

def main():
x = 5

x

2*10

5*n+3

n

C++, Go, Java C++, C#, PHP, Rust Haskell, R, Scala
Java, JavaScript, 

Python, Ruby
(And C++ via pointers)



Name/Need Semantics

A variable name is bound
to a pointer that points to 
an expression graph that 
can be evaluated to get a 

value

Parameter Passing Semantics

Value Semantics

A variable name is directly
bound to the storage that 

holds the value

Reference Semantics

A variable name is directly 
bound to another 

variable’s storage, like an 
alias

Parameter Passing Semantics are directly related to Binding Semantics!

Object Reference 
Semantics

A variable name is bound 
to a pointer that points to 

an object/value

int f(int q) {...}
int main() {

int x = 5;
f(x);

}

int f(int &r) {...}
int main() {

int x = 5;
f(x);

}

f n = 5*n+3

main = do 
let z = f (2*10)

def f(x):
...

def main():
z = 5
f(z)

n

2*10

x 5

q 5

x 5r

x

z 5

Pass by Value 
(aka Pass by Copy)

The formal parameter 
gets a distinct copy of the 
argument's value/object

Pass by Reference

The formal parameter is 
bound to the argument's 

storage, like an alias

Pass by Object Reference

The formal parameter is a 
pointer that points to the 

argument object

Pass by Name
Pass by Need

The formal parameter is a 
pointer that points to an

expression graph



Let's learn the following about each approach using the following framework:

How does "initial binding" 
of the variable work

What happens when we 
do a "variable update"

What happens when we 
do a "variable mutation"

int main() {
Dog d = Dog("Koda");
Dog e = Dog("Fido");
...

} 

int main() {
Dog d = Dog("Koda");
Dog e = Dog("Fido");
d = e;
...

} 

int main() {
Dog d = Dog("Koda");
Dog e = d;

d.set_bark(10);
} 

Variable Binding Semantics



Value Semantics

How does "initial binding" 
of the variable work

Each variable name is directly "bound" to storage
on the stack that holds the variable's value.

x 5

int main() {
string s1 = "abc";
string s2 = s1;
...

}

What happens when we do 
a "variable update"

What happens when we do 
a "variable mutation"

s1

s2
"abc"

"abc" void foo(string s3) {
...

}

int main() {
string s1 = "abc";
foo(s1);

}

s1
"abc"

s3

"abc"

"abc"

"abc"



void foo(string s3) {
...

}

int main() {
string s1 = "abc";
foo(s1);

}

Value Semantics

How does "initial binding" 
of the variable work

Each variable name is directly "bound" to storage
on the stack that holds the variable's value.

x 5

int main() {
string s1 = "abc";
string s2 = s1;
...

}

What happens when we do 
a "variable update"

What happens when we do 
a "variable mutation"

s1

s2

"abc"

s1

s3

"abc"

"def"

int main() {
string s1 = "abc";
string s2 = s1;
s2 = "def";

}
"def"

void foo(string s3) {
s3 = "ghi"

}

int main() {
string s1 = "abc";
foo(s1);

}

"ghi"



void foo(string s3) {
...

}

int main() {
string s1 = "abc";
foo(s1);

}

Value Semantics

How does "initial binding" 
of the variable work

Each variable name is directly "bound" to storage
on the stack that holds the variable's value.

x 5

int main() {
string s1 = "abc";
string s2 = s1;
...

}

What happens when we do 
a "variable update"

What happens when we do 
a "variable mutation"

s1

s2

"abc"

s1

s3

"abc"

int main() {
string s1 = "abc";
string s2 = s1;
s2.append("!");

}

void foo(string s3) {
s3.append("!");

}

int main() {
string s1 = "abc";
foo(s1);

}

"abc!"

"abc!"

Takeaway: With Value Semantics, each variable has its own separate storage, 
so assignment/mutation of one variable doesn't affect the others.



Reference Semantics

How does "initial binding" 
of the variable work

int main() {
string s1 = "abc";
string &r1 = s1;
...

}

What happens when we do 
a "variable update"

What happens when we do 
a "variable mutation"

s1 "abc" void foo(string &r2) {
...

}

int main() {
string s1 = "abc";
foo(s1);

}

s1
"abc"

A reference variable acts as an alias for an existing variable, allowing 
you to access/modify the original variable's value through that alias. x 6r

r1

r2

The reference is an 
alias for the original 

variable!
The reference is an 
alias for the original 

variable!



void foo(string &r2) {
...

}

int main() {
string s1 = "abc";
foo(s1);

}

Reference Semantics

How does "initial binding" 
of the variable work

int main() {
string s1 = "abc";
string &r1 = s1;
...

}

What happens when we do 
a "variable update"

What happens when we do 
a "variable mutation"

s1

s1

int main() {
string s1 = "abc";
string &r1 = s1;
r1 = "def";

}

void foo(string &r2) {
r2 = "ghi";

}

int main() {
string s1 = "abc";
foo(s1);

}

"ghi"

Notice that changes to 
r1 actually change s1.

A reference variable acts as an alias for an existing variable, allowing 
you to access/modify the original variable's value through that alias. x 6r

r1

r2

And the change persists 
even after we return from 

the foo() function!

Notice that changes 
to r2 actually change 

s1.

"def"



void foo(string &r2) {
...

}

int main() {
string s1 = "abc";
foo(s1);

}

Reference Semantics

How does "initial binding" 
of the variable work

int main() {
string s1 = "abc";
string &r1 = s1;
...

}

What happens when we do 
a "variable update"

What happens when we do 
a "variable mutation"

s1

s1

int main() {
string s1 = "abc";
string &r1 = s1;
r1.append("!");

}

void foo(string &r2) {
r2.append("!");

}

int main() {
string s1 = "abc";
foo(s1);

}

"abc!"

"abc!"

A reference variable acts as an alias for an existing variable, allowing 
you to access/modify the original variable's value through that alias. x 6r

r1

r2

Notice that changes to r1 
actually change s1.

Notice that changes to r2 
actually change s1.

And the change persists even 
after we return from the 

foo() function!

Takeaway: With reference semantics, both assignment (e.g., r1 = "def") and 
mutation (e.g., r2.append("!")) change the referred-to variable (e.g., s1).



Reference Semantics: Examples

// References in Swift
func foo (s: inout String) {
s.append("!")

}

var message = "abc"
foo(s: &message)
print(message) // Output: abc!

Let's see how references work in Swift and C#:

// References in C#
class Program
{

static void foo(ref string s) {
s += "!";

}

static void Main() {
string message = "abc";
foo(ref message);
Console.WriteLine(message); // Output: abc!

}
}

In Swift we use an & to 
indicate a variable is 
passed by reference.

And we use the inout
keyword for the formal 

parameter.

In C# we use ref
in both places.



Object Reference Semantics

How does "initial binding" 
of the variable work

def main
s1 = "abc"
s2 = s1
...

end

What happens when we do 
a "variable update"

What happens when we do 
a "variable mutation"

def foo(s3) 
...

end

def main
s1 = "abc"
foo(s1)

end

Each variable name is bound to a pointer 
that points to a separate object/value. 

x 5

s1

"abc"

s2

The object reference 
variable is a pointer.

#1: When we define a new object 
reference (s2) and assign it to an 

existing one (s1)... #2: The new object 
reference copies the 

address in the old 
pointer...

#3: So they both 
point at the same 

value/object in 
memory.

s1

"abc"

s3

The new object 
reference points at our 
original object/value.



def foo(s3) 
...

end

def main
s1 = "abc"
foo(s1)

end

Object Reference Semantics

How does "initial binding" 
of the variable work

def main
s1 = "abc"
s2 = s1
...

end

What happens when we do 
a "variable update"

What happens when we do 
a "variable mutation"

def main
s1 = "abc"
s2 = s1
s2 = "def"

end

def foo(s3) 
s3 = "ghi"

end

def main
s1 = "abc"
foo(s1)

end

Each variable name is bound to a pointer 
that points to a separate object/value. 

x 5

s1

"abc"

s2

"def"

s1

"abc"

s3

"ghi"

This variable update 
points our s2 pointer at a 

new value!

This assignment 
points our s3 

pointer at a new 
value!

It has no effect on s1, 
which still points to 

"abc"!

It has no effect on s1, 
which still points to 

"abc"!



s1

s3
s1

s2

def foo(s3) 
...

end

def main
s1 = "abc"
foo(s1)

end

Object Reference Semantics

How does "initial binding" 
of the variable work

def main
s1 = "abc"
s2 = s1
...

end

What happens when we do 
a "variable update"

What happens when we do 
a "variable mutation"

def main
s1 = "abc"
s2 = s1
s2.concat("!")

end

def foo(s3) 
s3.concat("!")

end

def main
s1 = "abc"
foo(s1)

end

"abc!"

"abc!"

Each variable name is bound to a pointer 
that points to a separate object/value. 

x 5

#3: Because 
they both 

refer to the 
same string 

object!

#5: actually 
change s1's 
object too!

#6: Because they 
both refer to the 

same string object!

#4: Notice that 
mutating calls 
to s3's object...

#2: actually 
change s1's 
object too.

#1: Notice that 
mutating calls to 

s2's object...

And the change persists 
even after we return 

from the foo() function!



Object Reference Semantics

How does "initial binding" 
of the variable work

What happens when we do 
a "variable update"

What happens when we do 
a "variable mutation"

def main
x = [1,2,3]
y = x
x[1] = 9

end

def foo(y) 
y[1] = 9

end

def main
x = [1,2,3]
foo(x)

end

Each variable name is bound to a pointer 
that points to a separate object/value. 

x 5

x

[  ,  ,  ]

1 32 x

[  ,  ,  ]

1 3

9

2

y

Takeaway: When two object references point to the same object, assignment 
of one to a new value does not change the other, but mutation impacts both.

y

9



Object Reference Challenge!

# Python
def main():

x = [1, 2]
y = x
x += [3]    
print(x)
print(y)

# Ruby
def main

x = [1, 2]
y = x
x += [3]
puts x
puts y

end

Consider these programs in Python and Ruby, and their output:

[1, 2, 3]
[1, 2, 3]

[1, 2, 3]
[1, 2]

Why does += change the shared list of 
x and y in Python, but not in Ruby?

# Python
def main():

x = [1, 2]
y = x
x += [3]    
print(x)
print(y)

# Ruby
def main

x = [1, 2]
y = x
x += [3]    
puts x
puts y

end



Object Reference Challenge!

# Python
def main():

x = [1, 2]
y = x
x += [3]    
print(x)
print(y)

# Ruby
def main

x = [1, 2]
y = x
x += [3]
puts x
puts y

end

Consider these programs in Python and Ruby, and their output:

[1, 2, 3]
[1, 2, 3]

[1, 2, 3]
[1, 2]

Why does += change the shared list of 
x and y in Python, but not in Ruby?

Answer: Because in Python, x += y is syntactic sugar for the mutating call x.append(y),
but in Ruby, x +=y is syntactic sugar for the variable update x = x + y!

# Python
def main():

x = [1, 2]
y = x
x += [3]   # x.append(3)
print(x)
print(y)

# Ruby
def main

x = [1, 2]
y = x
x += [3]   # x = x + [3]
puts x
puts y

end

This is a variable 
update!

x

[  ,  ]

1 2

x

[  ,  ,  ]

1 32

This is a variable 
mutation!

y

x

[  ,  ]

1 2

y

[  ,  ,  ]

1 32



Java uses object reference semantics 
for all objects… but not for primitive 

types like ints and doubles.

public class Nerd {
Nerd(String name, int iq) {
name_ = name;
iq_ = iq;

}
…
private String name_;
private int iq_;

}

public class SomeOtherClass {
void someFunc() {

Nerd n1 = new Nerd("Carey",100);
Nerd n2 = new Nerd("Paul",200);
n2 = n1;
…

}
}

Object References: Java

n1
name_ "Carey"

IQ_ 100

name_ "Paul"

IQ_ 200

n2

And in fact, object reference 
semantics is the dominant paradigm 

in most modern languages:

C#, Java, Javascript, Python, etc.



# Python object identity vs. equality
class Dog:
def __init__(self, name, weight):
self.name = name
self.weight = weight

def __eq__(self,other):
return self.name == other.name and \

self.weight == other.weight

def main():
d1 = Dog("Fido",24)
d2 = Dog("Fido",24)

if d1 == d2:
print("d1 has object equality with d2")

if d1 is d2:
print("d1 and d2 have the same identity")

if d1 is d1:
print("d1 and d1 have the same identity")

Object Reference Semantics: Testing for Equality

CHALLENGE! When we compare two 
object references with == what happens?

d2 2240
"fido"

24

d1 1000
"fido"

24



# Python object identity vs. equality
class Dog:
def __init__(self, name, weight):
self.name = name
self.weight = weight

def __eq__(self,other):
return self.name == other.name and \

self.weight == other.weight

def main():
d1 = Dog("Fido",24)
d2 = Dog("Fido",24)

if d1 == d2:
print("d1 has object equality with d2")

if d1 is d2:
print("d1 and d2 have the same identity")

if d1 is d1:
print("d1 and d1 have the same identity")

Object Reference Semantics: Testing for Equality

CHALLENGE! When we compare two 
object references with == what happens?

There are two concepts of equality 
when it comes to object references:

Object Identity: Do two object 
references refer to the same object at 

the same address in RAM.

Object Equality: Do two object 
references refer to objects that have 

equivalent values (even if they're 
different objects in RAM).

d2 2240
"fido"

24

d1 1000
"fido"

24

In python, comparing 
two object references 
with "is" tests for the 
same object identity.

d1 has object equality with d2
d1 and d1 have the same identity

You might also see 
folks using ===, which 

is the same as "is".

In Python, comparing two 
object references with == 
tests for object equality.

Dunder (aka "double underscore") 
functions like __eq__ enable Python 

objects to customize how they're 
compared, printed, iterated over, etc.



Object Reference Semantics: Testing for Equality

Object Identity: Do two object references refer 
to the same object at the same address in RAM.

Object Equality: Do two object references refer 
to objects that have equivalent values (even if 

they're different objects in RAM).

public class Dog {
...
public Boolean equals(Dog other) {
return name_.equals(other.name_) &&

weight_ == other.weight_;
}

String name_;
int weight_;

}

public OtherClass {
public static void main(String args[]) {
Dog d1 = new Dog("Fido",24);
Dog d2 = new Dog("Fido",24);

if (d1.equals(d2))
System.out.println("d1 & d2 have equality");
if (d2 == d1)
System.out.println("d1 & d2 have same identity");
if (d1 == d1)
System.out.println("d1 & d1 have same identity");

}   
}

Ok, here's the Java version!

In Java, comparing two object 
references with == tests for 

object identity.

In Java, we use the equals()
method to test if two objects are 

logically equal.

d1 & d2 have equality
d1 and d1 have same identity



When we pass a pointer to a function, it's identical to passing by object reference! Let's see!

main()'s Activation Record

void f(string *x, string *y) {
y = x;

}

int main() {
string c = "Chocolate";
string v = "Vanilla";

f(&c, &v);
cout << v;

}

f()'s Activation Record

c "Chocolate"

// Vanilla

2000
2020

…

2000

x 2000
1000
1020

…

v "Vanilla"

2020

y 2020

Pointers: A Type of Object Reference

2000
Just like assignments with 
object references, this just 

copies the pointer from x into y.

But does nothing to 
the pointed-to 
objects/values!When we use & to get the address of a

value/object, it gives us a pointer –
that's basically an object reference!



Ok, but what if we use *s to dereference our pointers?

main()'s Activation Record

void f(string *x, string *y) {
*y = *x;

}

int main() {
string c = "Chocolate";
string v = "Vanilla";

f(&c, &v);
cout << v;

}

f()'s Activation Record

c "Chocolate"

// Chocolate

2000
2020

…

2000

x 2000
1000
1020

…

v "Vanilla"

2020

y 2020

Pass by Pointer: A Type of Pass by Object Reference

"Chocolate"

Then we can read/write the pointed-to object itself!

Use of the * lets us 
read/write the pointed-

to objects!

Moral: Using dereferenced pointers work the same as reference semantics in C++!



Aliasing
"Aliasing" occurs when two parameters to a 

function unknowingly refer to the same 
value/object and the function modifies it.

main()'s Activation Record

void filter(set<int> &in
set<int> &out) {

out.clear();
for (auto x: in)
if (is_prime(x)) out.insert(x);

}

int main() {
set<int> a;
... // fill up a with #s
filter(a, a);

}

filter()'s Activation Record

in

a {5, 7, 8, 22}

// wrong result!

out

{}

Our intent here is to clear variable out,
but out and in refer to the same variable 
a! So this clears our input a before it can 

be processed!

Aliasing can occur any 
time you use references

or object references.

Notice we're passing in a for both 
parameters!

It can cause subtle and 
difficult to find bugs –

let's see!

To avoid aliasing, prefer returning new objects 
instead of mutating passed-in objects.



main = do 
let x = 5
let y = 3 + x
let z = y^2+7
print z
print z

When a variable's value is needed (e.g., to be printed), the expression represented 
by the graph is "lazily evaluated" and a value is produced.

Name Semantics

Heap MemoryActivation Record

x 5

y 3 +  

z (        )^2 +7

Any computation in the 
expression is deferred 

until it's absolutely 
required.

Rather than computing the 
result, a graph is constructed 

which represents the eventual 
computation.

5

To print the result, 
the language finally 
forces evaluation of 

the expression.

Every time you force evaluation 
of the variable, the expression 

is fully re-evaluated!

Languages with name semantics bind each variable name to the equivalent of an 
expression graph, which once evaluated, yields the final value of the variable.



main = do 
let x = 5
let y = 3 + x
let z = y^2+7
print z
print z

The only difference is that the language memoizes (caches) the result 
of each evaluation to eliminate redundant computations.

Need Semantics

Heap MemoryActivation Record

x 5

y 3 +  

z (        )^2 +7

8

5

8

71

The first evaluation would 
compute and then memoize
the result of the expression.

All later evaluations 
can just use the 

memoized result!

Need semantics works almost exactly like Name semantics!

7171



Binding/Parameter Passing: How To Tell Which One

Does assignment 
affect the caller's 

variable?

Is there an 
expression that's 
never evaluated?

Do var.mutate()
calls affect the 

caller's variable?

Reference Semantics/
Pass by reference

Name/Need 
Semantics

Object Reference Semantics/
Pass by Object Reference

Start Value Semantics/
Pass by value

YES YES YES

NO NO

NO

Inspired by former student Vincent Lin

Imagine we give you a program and tell you its output...
How can you determine which binding strategy the language uses?



Consider the following program, 
which prints:

Classify That Language: Parameter Passing

procedure func1(v: Integer);
begin

v := v + 3;
end;

function func2(var v: Integer): Integer;
begin

v := v + 100;
func1(v);

end;

var
q, r: Integer;

begin
q := 10;
func2(q);
writeln('q is ', q);

end.

What parameter passing strategies is 
this language using?

q is 110



Consider the following program, 
which prints:

Classify That Language: Parameter Passing

procedure func1(v: Integer);
begin

v := v + 3;
end;

function func2(var v: Integer): Integer;
begin

v := v + 100;
func1(v);

end;

var
q, r: Integer;

begin
q := 10;
func2(q);
writeln('q is ', q);

end.

What parameter passing strategies is 
this language using?

Answer: This language is using pass-
by-valueand pass-by-reference! This 
is Pascal!

q is 110

This is how we define a pass-
by-reference parameter.

This is how we define a 
pass-by-value parameter.



The program to the left was 
written in a language that supports 

Need Semantics.

Human Interpreter: Binding Strategies

object Main extends App {
def f(): Int = {
println("Getting the value of x now!")
1  // returns 1 as the result of f()

}

lazy val x = f()
lazy val y = 3 + x
lazy val z = y * y + 2
println("About to print!")

println(z)  
println(z)  

}

What does it print?

This is Scala!



The program to the left was 
written in a language that supports 

Need Semantics.

Human Interpreter: Binding Strategies

object Main extends App {
def f(): Int = {
println("Getting the value of x now!")
1  // returns 1 as the result of f()

}

lazy val x = f()
lazy val y = 3 + x
lazy val z = y * y + 2
println("About to print!")

println(z)  
println(z)  

}

What does it print?
All of these assignments 

are lazy, so their 
computation is deferred!

This is the first time we need 
the value of z, so this is when 

the computation happens.

Since this languages uses Need 
semantics, the values of x, y and z are 

cached so f() is not called again.

Answer:
About to print!
Getting the value of x now!
18
18

This is Scala!


